

Advanced Capability Electric Systems

NDIA Disruptive Technologies Conference, September 2006

Scott Littlefield Office of Naval Research

USS Jupiter- 1913 Early example of Electric Drive

Navy is going electric

- T-AKE (Cargo Ship) Diesel-electric system, with in-hull electric motors.
 - Enabled improved internal arrangements, with room for more cargo.
- LHD-8 (Amphibious Ship) Hybrid system, with diesel-electric low speed mode and gas turbine mechanical drive at higher speeds.
 - Enables very efficient low-speed cruise.
- DD(X) Destroyer
 - First attempt at a power-dense, modern, militarized electric drive system.

Why is the Navy Going Electric?

- Enable Transformational Weapons Systems
 - Electromagnetic Guns
 - Shipboard Laser Systems
 - Advanced Sensors
- Improve Survivability
 - Rapid and anticipatory Reconfiguration of Power and systems
- Reduce Signatures
 - Eliminates propulsion gear noise
 - Enables lower speed propellers
 - Enables silent watch capabilities
- Reduce Life Cycle Costs
 - Reduction in Number of Prime Movers
 - Significantly Greater Fuel Efficiency
 - Eliminate high maintenance hydraulic systems

Integrated Power System leads to Reduced Number of Prime Movers

Mechanical Drive

Current DDG-51 class has seven gas turbines

Life Cycle Cost Drivers:

- Initial Acquisition Cost
- Manning
- Maintenance
- Fuel Consumption

<u>IPS</u>

Is it Disruptive?

- Potentially - -
 - Order of Magnitude increase in available power for non-propulsion electrical loads
 - Directed Energy Weapons
 - Electromagnetic Launchers and EM Guns
 - Advanced Sensors
 - Others?

Expected Growth in Power Requirements

Directed Energy

Laser Type Tailored to Application

Free Electron Laser Weapon System

- Scalable to high power for ship defense
- **Tunable wavelength for maritime environment**

Electric Fiber Laser weapon system

Light weight Laser system based upon fiber lasers for tactical aircraft

Why is it Important?

- Speed of light delivery for wide range of missions and threats
- Precise aim point and delivery with controlled effects and minimal collateral damage
 - Hard Kill or Soft Kill
- All electric for deep magazine without danger and logistics of conventional ordnance
- Rapid Retargeting

Who Needs it?

Surface Navy

- Ship self defense against cruise missiles and swarming small targets
- Theater Ballistic Missile Defense

Navy Aviation

- Accurate long range (>20km) land target engagement
- Anti air engagement (offensive & defensive)

Electromagnetic Railgun

What is it?

- Gun fired with electricity rather than gunpowder
- > <u>200 mile range in 6 minutes</u>
- Highly accurate, lethal guided projectile (GPS)
- Minimum collateral damage

Why is it important?

- Volume & Precision Fires
- Time Critical Strike
- All weather availability
- Variety of payload packages
- Deep Magazines
- Non explosive round/No gun propellant
 - Greatly simplified logistics
 - No IM (Insensitive Munitions) Issues
- Scalable effects
- Missile ranges at bullet prices

Who needs it?

- Marines and Army troops on ground
- Special forces clandestine ops
- GWOT
- Suppress air defenses When?
- Feasibility Demo 2011
- System Demo 2015
- IOC 2020-2025

A New Propulsion System can be the Trigger for a Disruptive Capability

Dual Use Technology?

Key Issues for Navy

- Power Density
 - Components
 - Distribution Architecture
- Fuel Efficiency
- Pulsed Power
- Signatures

Power Density Issue

Mechanical Drive still beats Electric Drive on Power Density.

Motor Torque Density

NRAC Summer Study – Future Fuels

- National Petroleum Usage 16M BPD
- DOD Usage 300K BPD (about 2% of national usage).
- DOD Usage:
 - Aircraft 73%
 - Ground 15%
 - Ships 8%
 - Installations 4%
- Recommendation DOD catalyze manufactured hydrocarbon liquid fuels infrastructure through long term purchase contracts.

Future S&T Directions:

- High Speed / High Frequency Generators
- Advanced Distribution Architecture
- Innovative Ship Propulsion
- Compact Power Electronics and Energy Storage to Support Pulsed Power Weapons and Sensors.

Questions?