How is the commercial world responding to RoHS?

Dr. Craig Hillman, DfR Solutions 301-474-0607, chillman@dfrsolutions.com

DoD DMSMS Conference

Charlotte, NC

July 11, 2006

What is RoHS?

Restriction **O**n the use of certain **H**azardous **S**ubstances in Electrical and Electronic equipment (July 1, 2006)

- Created by the European Union
- What is restricted?
 - Lead, mercury, cadmium, Cr⁶⁺, polybrominated biphenyls (PBB), polybrominated diphenylethers (PBDE)
- Who is covered?

- Household appliances, IT & telecom, Consumer equipment, Lighting, Tools, Toys and leisure equipment, Automatic dispensers
- Copycats spreading around the world
 - □ China (2007), Korea (2008), California (2010), South America (?)
- The result?
 - SnPb parts hard to find and getting expensive (40-50% increase)

Concerns of the Commercial Marketplace

Everything they've always worried about?

Hillman - DMSMS Conference, July 11, 2006

Design

- No major design changes
 - Some reduction in bond pad dimensions
 - Smaller ceramic capacitors for wave soldering

Good News!

Suppliers (Parts)

- Tracking of RoHS5 / RoHS6 compliance
 - Update of part control systems
 - Availability (Obsolescence)
- Market still unsteady; proliferation and evolution of material sets
 - Die Attach
 - Platings
 - Solder ball
- Robustness at elevated reflow temp
 - Pretty much addressed
- Tin whiskering

Supply Chain (Tin Whiskering)

- Focus on critical components
 - < 1 mm pitch (0.3 mm spacing)</p>
 - Metal can housing
 - Contact points (flex connector)
 - Welds (electrolytic capacitors)
- Follow industry specifications
 - Perform testing
 - Request test data
- Demand mitigation
 - Anneal for 1 hr at 150C
 - Use nickel underplate (>1.2 μm)
 - Plating thickness > 10 μm
- Request alternatives
 - Not aware of any commercial company considering solder dipping

ske	ering)	
Ő		
	STANDARD	
	Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes	
	JESD22A121	
	MAY 2007	
	JEDEC SOLID STATE TECHNOLOGY ASSOCIATION	

Manufacturing (Printed Circuit Board)

- HASL ENIG ImAg OSP HASL (Pb-free)
 - Better wetting, good co-planarity, long storage life

Damage	Board thickness	IR-240~250	IR-260
- During	≤60mil	Tg140 Dicy All HF materials OK	Tg150 Dicy HF- middle and high Tg materials OK
reflow	60~73mil	Tg150 Dicy NP150, TU622-5 All HF materials OK	Tg170 Dicy HF –middle and high TG materials OK
	73~93mil	Tg170 Dicy, NP150G-HF HF –middle and high TG materials OK	Tg150 Phenolic + Filler HF –middle and high TG materials OK
HASL – Hot air solder level ENIG – Electroless nickel/immersion gold ImAg – Immersion silver	93~120mil	Tg150 Phenolic + Filler HF –middle and high TG materials OK	Phenolic Tg170 HF –middle and high TG materials OK
OSP – Organic solderability preservative	121~160mil	Phenolic Tg170 HF –high TG materials OK	Phenolic Tg170 + Filler HF –high TG materials OK
DfR Solutions reliability designed, reliability delivered	161mil	PhenolicTg170 + Filler HF material - TBD	TBD

Manufacturing (Printed Circuit Board Assembly)

Shrinkage cracks / Hot tearing

- Narrower process window
 - Solvable (takes more time then you might think)
 - Hole Fill
 - Higher pot temperatures, avoidance of OSP
 Solvable
 - Optical inspection
 Pb-free now shiny
- Copper dissolution
 - Primarily a rework/repair issue
 - Isn't rework/repair <u>always</u> an issue?

Reliability

- Number one concern?
 Mechanical shock
 - High stress, high strain rate event
 - Drop, crash, direct-hit
- General findings
 - SAC less robust than SnPb
 - Plating materials are a greater driver
 - Still some uncertainty and contradiction

PQFP (28x28mm, 208 I/O)	Failures	
Pb-Free on ENIG	2/6	44/50, 45/50
Pb-Free on OSP	2/6	16/50, 29/50
SnPb on OSP	0/6	

Chong, ECTC 2005

When is Failure not a Failure?

Long-Term Reliability of Pb-Free

Hillman - DMSMS Conference, July 11, 2006

Vibration / Mechanical Cycling

- Findings
 - High strain: SAC worse
 - Low strain: SAC better
- Missing datapoint
 - Leaded devices
 - Failure is in lead, not solder
 - Solder transfers stresses
- What does this mean?
 - □ Problems with vibration and SnPb → Problems with vibration and SAC
 - No problems now? No problems later

Hillman - DMSMS Confe

Material Issues 1

- How to combine SnPb and Pb-free?
- Case Study 1: Pb-Free BGA with SnPb solder
 - >225°C to 245°C peak
 - Vibe, Mechanical Shock performance lacking
- Case Study 2: SnPb Lead with Pb-free solder
 - Potential risk

Material Issues 2

How to segregate SnPb from Pb-free?

Incoming materials (parts, boards)

Analysis (surprisingly few)

Assembly (different lines, material segregation, change in solder pots)

Product markings (part number, label, symbol, solder mask, silkscreen)

Recommendations for Program Managers

No. 1: Be educated, be aware

- Most commercial suppliers and OEMS, even if exempt from RoHS, are going Pb-free (General Motors / Ford, Maytag / Whirlpool, even Wal-Mart)
 - Diminishing availability and skill set with SnPb
- Plethora of good research and experience with Pb-free (find it!)
 - Google.com and Scholar.google.com
- Whether to ban or accept Pb-free product should be based on the capability of the supplier, reliability expectations, use environment, and maintenance requirements
 - Each program's experiences and concerns will be different

Recommendations (cont.)

Do not underestimate purchasing power

