

Proximity Sensor for Guided Unitary Multiple Launch Rocket System

50th Annual NDIA Fuze Conference May 9-11, 2006

Electronics Development Corporation

Overview

- System Background
- System Requirements
- Design Challenges
- Design
 - Antenna/Radome
 - ◆ Electronics
 - Signal Processor
 - Transceiver

System Background

Multiple-Launch Rocket System (MLRS)

- Legacy system
 - ☞ LRIP 1980

Ballistic trajectory

DPICM payload

- ◆ GPS/IMU Guidance added 2000
- ◆DPICM payload with unitary 2002
 - Seeded proximity sensor for maximum lethality
 - ☞ KDI/EDC turned on in December 2003

System Requirements

- Selectable Height of Burst (HOB) : 3m/10m
- 15° to 110° approach angle
 - Roll-stabilized
- 250m/s to 850m/s approach velocity
- Built-in-Test (BIT)

Design Challenges

- Radome/Antenna
 - ◆ Thermal environment
 - Solution Nose gets EXTREMELY hot
 - Cover push-through
 - Tube exit presents significant mechanical load
 - ◆ Broad angle of attack

Design Challenges

Electronics

◆ Velocity

Exceeds capabilities of existing transceiver/processor chip sets

♦ BIT

The Not available with legacy ASIC-based signal processors

- Aggressive Schedule
 - Approximately 13 months to CDR

Radome/Antenna

- Proposed concept was simple patch antenna and plastic radome (PEEK)
 - Antenna would be tilted to provide shallow angle coverage
 - ◆ PEEK has been used in rocket applications

Radome/Antenna

- LM concerned about thermal and mechanical radome environments
 - ♦ High temperature due to velocity
 - Severe tube-exit mechanical stress
- After contract award, LM analysis shows that PEEK won't with stand environments
 - Suggest that nose must be metal....!

Radome/Antenna Concepts

- A window on the side of a metal nose would be provided for the antenna
- Various concepts were considered
 - ◆ Waveguide aperture
 - ◆ Patch antenna mounted in/under window
- Analysis tool was needed
 - ◆ KDI acquired a 3D EM analysis tool to quickly evaluate various options

Waveguide Aperture

- Window would form waveguide aperture
 - Provided good coverage
 - Not practical to build/assemble

Waveguide Aperture

Patch Under Window

Simple patch antenna mounted under window

- Difficult to mount
- Less-than-optimal pattern

Patch Under Window

Ceramic Radome To The Rescue!

- Concurrently with KDI/EDC, LM did extensive thermal and mechanical analysis of nose tip
 - Identified proprietary ceramic material that could serve as entire radome/nose tip

The Will withstand thermal and push-through environments

Greatly simplified mounting concerns
Back to original concept

Not So Fast...

- High dielectric constant had significant influence on pattern (and impedance)
 - Original 20 degree tilt concept didn't work too well

Un-tilted Antenna

Un-tilted Antenna

Horizontal cut

◆ Antenna rotated so that this corresponds to pitch plane

Final Antenna Configuration

Show figure of 3D pattern

Final Antenna Configuration

Antenna Performance

Pitch Plane, Measured vs Calculated

20

Electronics Design Signal Processor

- Requirements precluded use of existing signal processor
 - ◆ High velocities result in Doppler frequencies outside the passband of existing mortar and artillery processing systems
 - ◆ Built-in-Test (BIT) not possible with existing processors
 - ◆ Aggressive schedule made new ASIC impossible

Electronics Design Signal Processor

- KDI/EDC leveraged previous IRAD work to design completely new signal processing system
 - ◆ All parameters are re-configurable
 - ◆ Reports BIT status to ESAF, which reports to Mission Computer
 - ◆ All components are commercially available **Procession No custom IC's!**

Electronics Design Transceiver

- Antenna/Radome design yielded good results, but only at a frequency significantly different than those used on legacy mortar and artillery systems
 - Could not use existing transceivers
 - ◆ Aggressive schedule made new MMIC impossible
 - New transceiver designed with commercially available components
 - **~** No custom IC's!

Electronics Assembly

Summary

- Difficult radome/antenna problem solved through TEAMWORK
 - Concurrent electromagnetic, thermal, and mechanical analysis
- Electronics contains NO custom components
 - Rapid development
 - ♦ Versatile design
- First shot success (see next slide)!

