

KDI Precision Products, Inc. 3975 McMann Road Cincinnati, Ohio 45245-2395

Affordable Weapon System

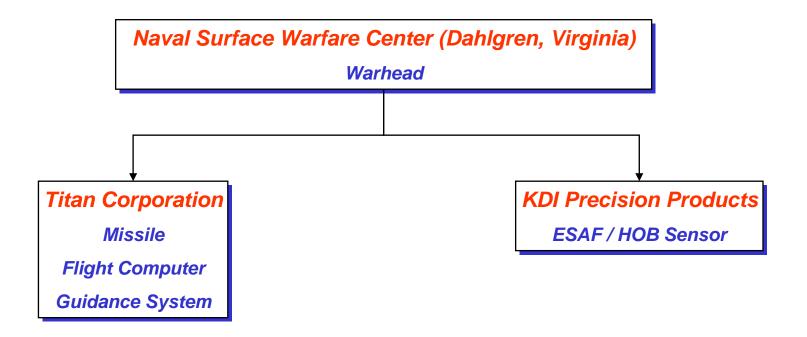
ESAF & HOB Design

John Hubert & Brian Miracle

NDIA 50th Annual Fuze Conference

May 9-11, 2006

Proprietary www.l-3com.com



Affordable Weapon System (AWS) Overview

Program Organization

Affordable Weapon System (AWS) Overview

Features

Dimensions:

• Length: 155 - in

• Diameter: 13.5 - in

• Wingspan: 146.4 - in

Payload 200 lb

Range (T/O): 600 / 840 miles

Speed

Stall/Max 128/220 knots

Cruise 150 knots

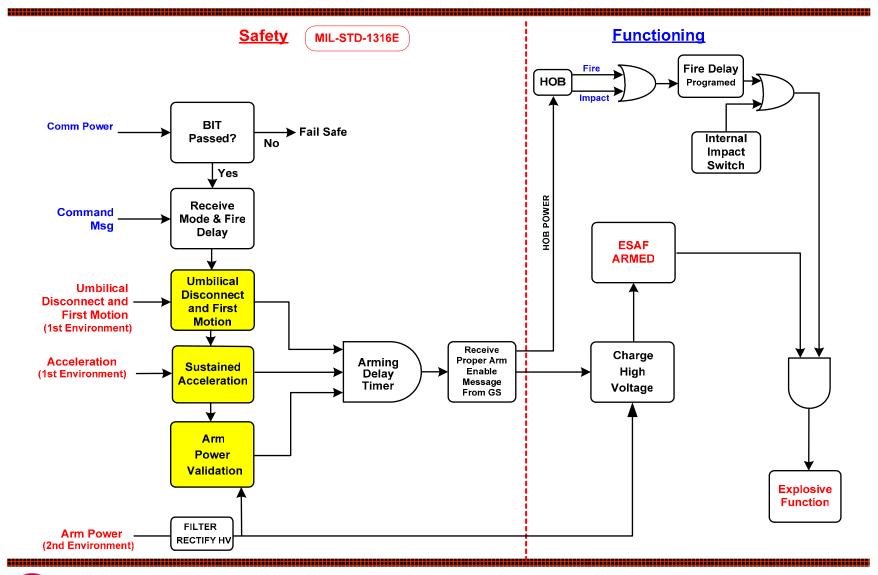
Endurance (T/O): 4 / 6 hours

Accuracy (CEP): ~10 meter

Launched from surface ship

AWS ESAF/HOB Major Design Goals

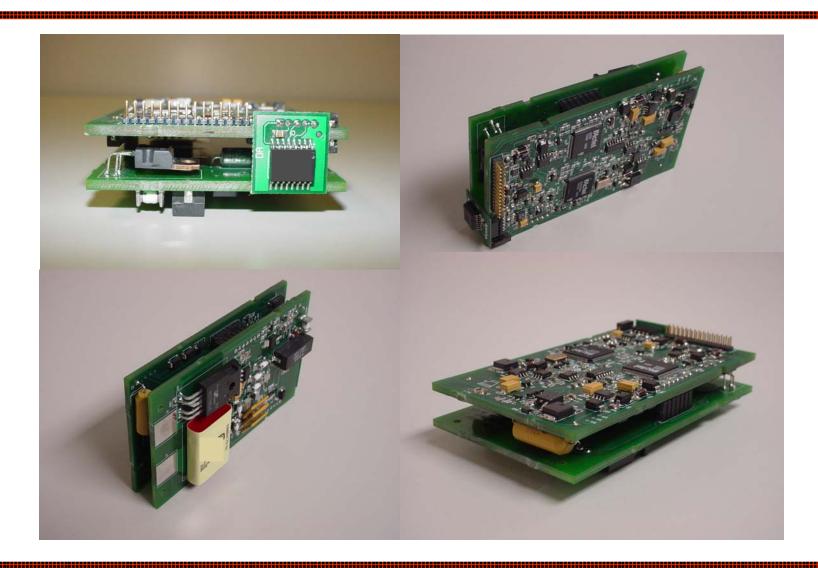
- ESAF compliant with MIL-STD 1316
- ESAF/HOB to utilize existing technologies to rapidly prototype
- ESAF to initiate with HOB command, HOB impact with target, or ESAF internal impact (backup)
- HOB to initiate warhead at 6 feet above surface or upon impact (primary firing modes)


AWS System Block Diagram

AWS ESAF Functional Block Diagram

AWS ESAF

AWS ESAF Electronics Assembly



AWS ESAF Circuit Card Assembly

AWS Challenges

- Program
 - Low development budgets
 - Accelerated schedule
- Technical
 - Limited technical specifications at program onset
 - Adapt existing technology to meet program requirements

AWS Program Challenges

- Low development and unit budgets / Accelerated schedule
 - Utilize existing "Off The Shelf" technology
 - Package Form Factor
 - PWB Form Factor / Layout
 - Circuit Architecture
 - Common Parts
 - Risk
 - Low
 - Modifications to existing technology

AWS ESAF/HOB Design Challenges

ESAF

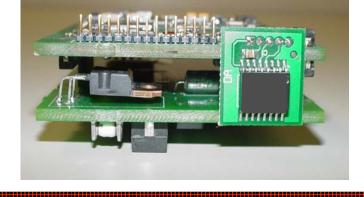
- Wide arming voltage input range over temperature vs. design target of "off the shelf" design
- Addition of accelerometer to "off the shelf" design
- Limited environmental safety signatures (ESAF)
 - Umbilical
 - Acceleration (minimal)
 - Arming Power

HOB

- Incorporate impact switch into existing design
- Input voltage range
- Packaging
 - Radome shape
 - Interface cabling

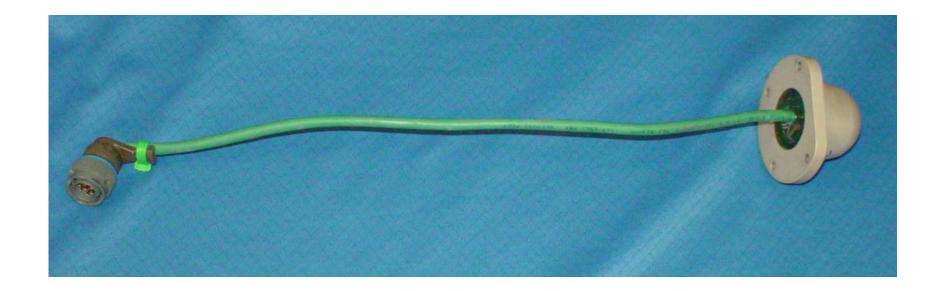
AWS ESAF Design Challenge

- Wider and lower arming voltage input range
 - Utilize existing high voltage generation circuit
 - Circuit originally designed for a much higher/regulated voltage over temperature versus the lower and wider voltage range for the AWS.
 - AWS arming power is derived from a turbine generated AC voltage and is rectified to a DC level.
 - Component changes to accommodate wider and lower arming power voltage
 - Dynamic clock optimized to achieve HV regulation within specified time frame



AWS ESAF Design Challenge

- Accelerometer required
 - Low acceleration levels
 - Limits available COTS accelerometers
 - Ship motion may be a significant factor
 - Launch angle offset must be accounted for
 - Packaging/Orientation
 - Addition of small circuit board
 - Limited choice of available devices featuring the acceleration level and


orientation required

AWS Height of Burst Sensor

AWS Height of Burst Sensor

- Based on DDR proximity detection technology used in the highly successful M734A1 Multi-Option Fuze for Mortars (Over 750,000 units delivered)
- Uses a highly integrated single-chip signal processor
- KDI-designed low-cost transceiver
- Extremely robust patch antenna with integrated transceiver circuitry

AWS HOB Design Challenges

- Incorporate impact switch into design
- Modify mechanical package to interface with AWS nose section
- PWB and cable modification to provide required signals
- Cabling and connector to meet space constraints
- Modification of design to meet lower input voltage requirement

AWS HOB Design Challenges

- Impact switch required
 - Picked existing normally closed impact switch used on other programs.
 - Mounted between power and processor PWBs
- Modify mechanical package to interface with AWS nose section
 - Modified existing Ogive radome to current design

AWS HOB Design Challenges

- PWB and Cable Modification to Provide Required Signals
 - Modified power PWB to provide additional signals, including interface to impact switch
 - Selected off the shelf cable to incorporate additional signals
- Cabling and Connector to Meet Space Constraints
 - HOB cable interfaces to AWS Using MS27473 Plug with 90 degree backshell that meets limited space requirements between missile wall and socket.

AWS HOB Design Challenge

- Modification of Design to Meet Lower Input Voltage Requirement
 - Lowered series resistance value on power board
 - Meets input voltage range of 8 ± 1VDC across temperature range of -40 to +70 °C.

AWS HOB Design Test Results

- Current design meets height of burst requirement of 6 ± 3 feet at reflection coefficients ranging from 0.2 to 0.8 and temperatures ranging from -40°C to +70°C.
- Functions acceptably after exposure to AWS in-flight environments.

AWS HOB Design Test Results

AWS ESAF/HOB Program Status

ESAF

- Breadboard unit delivered for system integration
- First design iteration successfully tested for explosive output after exposure to AWS in-flight environments
- Delivered Inert and Live prototype units for test purposes
- Second design iteration started
 - Construction Of IM and Test units started

HOB

- Successful height of burst shot with flash charge
- Delivered prototype units for testing purposes

Conclusion

- KDI successfully provided a timely and cost effective solution for the AWS program by:
 - Adapting a common and proven 3" architecture/form factor
 - Adapting a proven, high volume, HOB design
 - Closely working with the customer
 - Regularly scheduled meetings
 - Written status reports by program management
 - State of the art manufacturing

