



An advanced weapon and space systems company

### 50<sup>th</sup> Annual NDIA Fuze Conference Norfolk, VA 9-11 May 2006

# Thermal Battery Development – Reduced Product Variability Through Six Sigma and Materials Finger-Printing

#### Authors:

Paul F. Schisselbauer John Bostwick 215-773-5416 215-773-5428

ATK OS Power Sources Center ATK OS Power Sources Center







- Overview
  - Thermal Batteries and Applications
- Performance Comparison
  - Thermal Batteries Versus Ambient Temperature Batteries
- Process Definition Using Six-Sigma
- Thermal Battery Description
- Manufacturing Processes
  - Process & Materials Control
  - Materials Characterization
- Cost Reduction Initiatives
- Benefits of End-Product Consistency
- Summary





- Thermal Batteries are used on a variety of weapon systems, including:
  - Bombs
  - Projectiles
  - Missiles, etc.
- Proper battery function is often of critical importance in meeting a weapon system's mission requirements.



**ERGM Projectile** 



CALCM

 Thermal batteries have a proven track record and are capable of meeting the most demanding requirements.



M830A1



- - Correct battery function depends on its design and manufacture, both of which present some challenges.
    - Design subtleties affecting performance can be overcome using test verification
    - Manufacturing or materials subtleties, on the other hand, often cause issues even after they were thought to have been taken care of.
  - This paper presents a thermal battery development effort where product variability is reduced through the use of six-sigma tools, materials characterization or "finger-printing", and automation.
  - The battery developed by this effort can be used on several applications, including the DSU-33 Proximity Sensor and the Precision Guided Mortar Munition (PGMM).





**DSU-33 Proximity Sensor** 



## Performance Comparison



- Certain battery systems are ideally suited to military applications.
  - Cold Operating Temp. (-45F)
  - Long Shelf Life (>20 years)
- Lithium Oxyhalide Batteries are best suited to applications that require extended life.
  - Lithium/Thionyl Chloride
  - Lithium/Sulfuryl Chloride
  - Lithium/Sulfur Dioxide
- Thermal Batteries are best suited to applications that require high power.
  - Lithium Silicon/Iron Disulfide
  - Lithium Silicon/Cobalt Disulfide



# Ragone Plot Comparing Thermal Batteries to Lithium Oxyhalide Batteries.

(Approximate data - plot for illustration purposes only)





An advanced weapon and space systems company

| Parameter             | Thermal Batteries                                                                                                              | Lithium/Oxyhalide<br>Batteries                                                                                                                  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description           | Self-contained, hermetic, electrochemical power source                                                                         | Self-contained, hermetic, electrochemical power source                                                                                          |  |  |
| Storage Life          | 20 years                                                                                                                       | 20 years                                                                                                                                        |  |  |
| Storage Mechanism     | They achieve dormancy by<br>utilizing electrolytes which<br>require elevated temperature<br>to become ionically<br>conductive. | They achieve dormancy by<br>physically separating the<br>active components, i.e., the<br>lithium foil anode and the<br>electrolyte (catholyte). |  |  |
| Strength              | Provide <u>high current</u> density for high power applications.                                                               | Provide <u>high energy</u> density for extended mission times                                                                                   |  |  |
| Reliability           | High                                                                                                                           | High                                                                                                                                            |  |  |
| Thermal<br>Management | Important design consideration                                                                                                 | Minimal issues                                                                                                                                  |  |  |
| Cost                  | Moderate to high                                                                                                               | Low to Moderate – cost<br>effective in high volume<br>production                                                                                |  |  |





|                                        | Ambient Temperature Batteries                                     |                                                                                  |                                                            | Thermal Batteries                                               |                                                                   |
|----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
|                                        | Lithium Metal /<br>Thionyl<br>Chloride<br>(Li/SOCl <sub>2</sub> ) | Lithium Metal /<br>Sulfuryl<br>Chloride<br>(Li/SO <sub>2</sub> Cl <sub>2</sub> ) | Lithium Metal /<br>Sulfur Dioxide<br>(Li/SO <sub>2</sub> ) | Lithium Silicon<br>/ Iron Disulfide<br>(LiSi/FeS <sub>2</sub> ) | Lithium Silicon /<br>Cobalt Disulfide<br>(LiSi/CoS <sub>2</sub> ) |
| Energy Density<br>(Wh/kg)              | Reserve:                                                          | Reserve:                                                                         | Reserve:                                                   | Reserve:                                                        | Reserve:                                                          |
|                                        | 50 to 150                                                         | 45 to 135                                                                        | 32 to 95                                                   | 20 to 45                                                        | 20 to 75                                                          |
|                                        | Active:                                                           | Active:                                                                          | Active:                                                    | Active:                                                         | Active:                                                           |
|                                        | 300 to 440                                                        | 265 to 387                                                                       | 200 to 280                                                 | N/A                                                             | N/A                                                               |
| Power                                  | Moderate to<br>High                                               | Moderate to<br>High                                                              | Moderate                                                   | High                                                            | High                                                              |
| Working<br>Voltage Per<br>Cell (Volts) | 3.0 to 3.9                                                        | 3.0 to 4.2                                                                       | 2.7 to 2.9                                                 | 1.6 to 2.1                                                      | 1.6 to 2.1                                                        |
| Temperature                            | -45F to +160                                                      | -45F to +160                                                                     | -45F to +160                                               | -45F to +160                                                    | -45F to +160                                                      |



## **Process Definition Using Six-Sigma**



An advanced weapon and space systems company





### **Thermal Battery Description**



An advanced weapon and space systems company

**Concept Development** 

Product & Process Design

Product & Process Optimization Product & Process Capability



G3190B1 Thermal Battery (DSU-33 Application)

### <u>Performance</u>

Voltage (V): 22 to 32.0 Current (mA): 350 Rated Capacity (mAh): 20 Activation Time (ms): < 500 Initiation Approach: Electric Igniter Operating Temp. Range (°F): -65 to +221 Storage Temp. <u>Range (°F): -65 to +221</u>

#### **Physical Characteristics**

Chemistry: LiSi/FeS<sub>2</sub> Size: 1.50" Dia. by 2.38" Length Weight (g): 210

<u>Environmental</u> MIL-STD-331 Environments



- The G3190B1 device is a reserve primary lithium silicon/iron disulfide thermal battery.
- It is a self-contained, hermetic unit, capable of being stored in excess of 20-years and then being activated on demand.
- The battery's electrochemistry is based on Sandia's proven LiSi/LiCl-KCl/FeS<sub>2</sub> system.

• Overall Cell Reaction:

 $Li_4Si + FeS_2 \rightarrow 2Li_2S + Fe + Si$  (1.6V to 2.1V)

• This system easily meets both power and energy requirements of the DSU-33 fuze application.



# **Thermal Battery Description**







### LiSi/FeS<sub>2</sub> Battery for DSU-33

- Battery uses 15 cells in series
  - Voltage: 31.5V max.
  - Working voltage per cell: 1.8 V nom per cell
- Application requires a power of 7.7 Watts
  - Battery power significantly exceeds requirement due to the relatively high intrinsic electrode capabilities and battery size.
  - Initial battery projection approximately 150 watts.
- Application requires a capacity of 19.44 mAh
  - Battery capacity significantly exceeds requirement due to manufacturing limitations for minimum electrode thicknesses.
  - Initial battery projection 120 mAh capacity.



### **Thermal Battery Description**



An advanced weapon and space systems company



### LiSi/FeS<sub>2</sub> Battery for DSU-33

- Design uses a lithiated cathode to compensate for electro-active impurities.
- Electrolyte uses a eutectic binary composition of lithium chloridepotassium chloride to achieve lower temperature operation.
- Center fire initiation using an igniter.
- Operating Temperature Range: 352°C to 550°C.





# Manufacturing Processes









### Materials Characterization



An advanced weapon and space systems company **Product & Process Product & Process Product & Process Concept Development** Design Optimization Capability **Analytical Tests Description** Test Use **Direct observation** SEM Scanning Electron Microscopy FT - Raman Vibrational Raman Identifies molecules Spectroscopy – Laser Excitation Inductively Coupled Plasma with **ICP/OES Optical Emission Spectroscopy** Trace metal analysis Identification EDS X-ray Diffraction Spectroscopy Elemental composition Metallurgical Materials Analysis **Direct observation** Analyses Pyrotechnic Burn Rates Pressure Generation Versus Time Other Tests Various **Electrolyte Leakage Tests Mechanical Properties** 









- Automated Mechanical Press
  - High Speed Pressing of pellets
  - Smaller Footprint
  - Good Modularity for Changes in Pellet Size
- FeS<sub>2</sub> Purification
  - Safe & Cost Effective
- Lithium Silicon
  - Manufacture Versus Buy
- Igniters
  - Make/Buy Analysis has Identified Low-Cost Solution that Meets Requirements



- Increases product reliability
- Improves the consistency in performance, I.e., tighter groupings in performance
- Easier to identify technical issues





- A disciplined design and manufacturing approach using Six-Sigma tools has resulted in the success of this thermal battery project.
- Automated manufacturing of thermal batteries is long over due.
- Future power requirements appear to be headed toward higher energy and power densities:
  - Specific Energy: 35 Wh/kg → 70 Wh/kg
  - Specific Power: 750 W/Kg → 1500 W/Kg
- Technical innovations in both performance and manufacturing are required to meet the projected program demands.
- The *Power Sources Center* is poised and ready to take on these challenges.

