
UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch

Proximity Fuze Simulation 
with Embedded Tactical 
Software

NDIA Presentation

John E. Langan

Code 478600D

China Lake, CA 

john.langan@navy.mil

(760-939-3726)

Approved for public release; distribution is unlimited.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Fuze Simulation (1995 – present)

GenSim runs  missile endgame scenarios and outputs data in 
many formats. (Radar Proximity Fuze Simulation written in MS 
Visual C++).  It is primarily written in  “C”. 

GenSim utilizes actual radar patterns / gains and implements 
Npoint target modeling and simulated radar clutter modeling.

GenSim actually moves a missile reference and target reference 
along vectors toward Point-of-Closest-Approach (PCA)  in its 
calculations. (This is called Time-Based processing).

GenSim presently has about thirty target models and variations 
of target models.  It has missile AAW targets, surface targets, 
and slow targets.  It contains a low altitude clutter model.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch

Missile Proximity Fuzing

Missile proximity fuzing is implemented in the last moments of  
missile flight as the missile and target converge to Point-Of-
Closest-Approach (PCA).  Proximity Fuzing is about detecting the 
target and timing the bursting of the warhead to optimize 
warhead fragment placement on the target.

The design of missile proximity fuzes (Target Detecting Devices 
(TDDs)) requires analysis tools that simulate the fuzing system’s 
operation and measures of effectiveness for the TDD as well as 
the missile itself. 



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Legacy Fuze Simulations (1970 –1980’s)

Simple Geometric models: Event based, this means 
that the encounter did not  actually move but 
detection was calculated geometrically.

Slow:  The computers these were run on were 
mainframes or mini-computers and took a long time 
to run encounter scenarios. Administration issues.

Target and Clutter models were geometric models (or
utilized tables of data, not actual sensor models)



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch

Missile and Target 
Coordinates

TAIL

TARGET

+Z

+X

+Y

- X

+ AZ

+ EL

.
. . .

. . .

.

.
.

NOSE

ORIGIN (0, 0, 0).
missile reference
point

Pala Target Coordinate System

GenSim fuze
Detection is done 
in a Missile-Body 
Coordinate 
System.  The fuze 
detection point is 
defined by a 
spherical 
coordinate R, α, φ

The Npoint
Target is loaded 
into GenSim in
Pala Coords.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch

Inertial Coordinates 
(Landbased)

PHI-T
+ CW

+y

+x
+N

+E +D

+z

+N'
MSL CL

TGT CL

(SN, SE, SD)

VT = (SNTD, SETD, SDTD)

VM
= |SND, SED, SDD|

RM
 =

 |M
IS

SN
,  

M
IS

SE
, M

IS
SD

|

+psiCL PROJ ON PLANE PARALLEL TO NE

+ THA

MISSILE

TARGET

VT'

PHI
+ CW

 Psi-T
+ CW

THAT-T
+Nose-Up

PCA
(SNT, SET, SDT)

The GenSim 
“Time-Based”
Encounter is run in
Landbased 
coordinates



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Input / Output Files

FUZ
Gr,Gt,

Roll,Elv
DSP, Est

INPUT
ENCS:
EZE
6DOF
MAG
OTHER

SET MSL
AOA, Beta 
Spmiss. Est, 
Whd tables

Target
xyz

Clutter
Mean, σ

I/O
Switches

GENSIM
*.EXE

The SET file is 
run with GenSim 
and calls the files 
it needs to run

The output files include:  Detect, No Detect, Guidance 
Reject, DR/XR, VM/X, Graph, Lethal Burst Interval, 
Banana, Mesa, Warhead Enc Format

Switches include:
Output / Analysis folder.
Repeat Encounter, Clutter
Rejection, Mirror, 
Resp Est, 
Detection Burst Cntl

Target and
Clutter models

Detection And BurstControl
(TACTICAL SOFTWARE)



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Npoint Target Models

• An N-point model accounts for target RCS as well as
radar characteristics, The “N” is the number of radar
reflector points. N-point modeling is based on the theory that 
radar data tends to pool in specific areas on the target.

• Locations are specified relative to target nose (*.xyz file).
• The xyz file contains “N” points in x,y,z format 
• The RCS specified in angle increments.

Az: -180 to +180.
El:  -90 to +90.

At present there are over thirty N-point 
Targets developed for GenSim including
Missiles, aircraft, slow targets and surface targets.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Clutter Modeling

The GenSim Clutter Model loads an input file that contains the 
(Mean, σ) for Clutter Radar Cross Section (RCS) tabulated for 
various conditions and incidence angle of the beam.

GenSim uses encounter geometry in looking up the (Mean, σ) 
value.

The Threshold is calculated as:
RCS = Mean + K * σ + Offset:

where:  Mean, σ are lookup table values.
Mean, σ, and Offset are in dBSm.
K and Offset are the clutter sigma multiplication factor.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Early GenSim / Fuze Algorithms

GenSim was designed to do analysis “trade studies” for missile 
proximity fuze development.

Early GenSim contained its own fuze detection and Burst 
Control. Burst Control contains time-delay algorithms.

This simulation was used to make fuze design decisions in  
sensory development, signal processing complexity, and missile 
/ fuze interface limits based on missile encounter conditions (to 
name a few).

With the burst control software (guidance / fuzing / warhead 
combined effectiveness “PK” could be estimated). 



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Early GenSim / Common Header

In early GenSim planning, it was intended that this simulation  
be implemented together with actual missile fuze tactical 
software to aid in improved tactical software development as 
well as provide “accurate” fuze effectiveness under varying 
missile endgame scenarios. GenSim would create the missile / 
target environment and would call the tactical software.

To prepare for tactical software implementation a common 
header file “*.h” was created where both GenSim could place 
program definitions as well as the tactical software.  This 
created a “common placeholder” where  GenSim could pass and 
receive info from tactical S/W.  Detection and BurstControl 
functions were defined with the prefix:  “Common_” to prepare 
for Tactical implementation. The function“Common_DetTdLogic”
contained GenSim detection and BurstControl algorithms.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim,  Early Tactical S/W

For the first Tactical S/W interface, the “Common_DetTdLogic”
function was replaced with a Tactical Interface (TI) function called 
“TI_TerminalExecutive( )”.  This file contains (GenSim/ Tactical) 
interface (TI) files.

Other Tactical file definitions:  “TI” was tactical interface,”LM” lightly 
modified tactical files, “SAL” were “Simulation Abstraction Layer” as 
opposed to the tactical “HAL” Hardware Abstraction Layer. 

The GenSim Side had to perform a lot of Tactical S/W initialization in 
the first implementation since the tactical software was not operating 
as it was designed.  The tactical software was designed to run once.   
GenSim with embedded tactical must run multiple scenarios.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch

Early Tactical S/W (continued)

GenSim is setup to run only the endgame portion of the 
encounter (last tenth of a second or so). The Tactical software 
is written to handle missile flight from intercept arm (last half 
second or so).  GenSim has to properly handle the Tactical 
software for this part of the flight.
GenSim would run the encounter and pass information to the 
Tactical S/W every frame while doing this pre-encounter 
initialization. 
In this early development our understanding of the Tactical 
S/W was poor and therefore our initialization methods were 
crude.  The Tactical software was designed with 
microprocessors in mind and our embedded tactical simulation 
was not.  The Dynamic-Linked-Library concept changed that.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Evolution (DLL’s) 

• In the Dynamic-Linked-Library approach, the Tactical Software 
becomes an Executable (*.exe) called by the GenSim Executable 
program.  The Simulation becomes multiple nested executable 
programs that pass information through a mailbox (DLL).

• GenSim initializations can be done on the GenSim side, Tactical 
initializations can be done on the Tactical side and pertinent 
information can be passed between the processes through the 
DLL.  The DLL approach simplified Tactical “drop-in” to GenSim.

• Before the DLL was utilized, GenSim would have to be run once 
for each processor in the system. (working with each processor 
independently). With the DLL concept, each processor is now an 
executable called by the GenSim executable each frame.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Evolution (DLL’s)

This figure shows a 
single processor, 
single executable 
DLL approach.

Red and Blue 
denote events 
where the DLL 
passes information 
between 
processors.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Evolution (DLL’s)

This figure shows a 
three processor, three 
executable DLL 
approach.

Red ,  Blue and 
Green denote events 
where the DLL 
passes information 
between processors. 

Blue, Green is  To Master
Red is from Master 



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Evolution (DLL’s)

Before DLL:                                      DLL Version:

GenSim EXE
(Tactical 
Initialization)

Tactical S/W

Run “N” times 
“N” being number 
of processors

END

N

GenSim EXE

A S/W

B S/W

C S/W
Master 
S/W

END

ChA EXE

ChB EXE

ChC EXE

Master EXE

Note the single 
processor 
approach would 
only include one 
called EXE.



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
GenSim Used for Flight Testing

• GenSim can interface with missile six-degree-of-freedom (6DOF) 
files  (two different file formats).

• 6DOF’s can be run to simulate flight test conditions and the files 
run with GenSim to see how the fuze tactical software will 
respond to the flight test encounters.

• With this approach, we have been able to diagnose errors in the 
tactical software that have been fed back to the contractor for 
fixes.  The new tactical software can then be put in the 
simulation and the process repeated.  Flight Test TM data can 
be compared to simulation output data for post-flight analysis.

• This approach led to the improved DLL tactical software 
interface. 



UNCLASSIFIED

UNCLASSIFIED

Proximity Fuze Branch
Notes and Comments

• By modeling Sensor TXT/RCV and Target reflectivity in the 
GenSim simulation we have a much improved simulation for 
doing missile fuze design verification and validation.

• Having the ability to “drop-in” a version of proximity fuze 
tactical software and run numerous tactical missile scenarios 
gives us an ability to find defects in the tactical software as well 
as predict tactical operation before any actual flight tests are
performed. Post-Analysis with flight test TM can be compared. 

• The Dynamic-Linked-Library (DLL) approach to interfacing the 
tactical software to the GenSim simulation simplified the 
interface, and improved the information handshake between 
GenSim and Tactical.


