

Evolving Engineering and Design Criteria

An Iterative Process

- Desired characteristics
- Safety
- Operate in Naval environment
- Power to weight ratio (lethality)
- Mission capability

Components of the Experiment

- Design of the modular mount
- Firing stress and force analysis of the deck structure and blast over pressure
- Installation and integration of the EO/IR FCS
- Design and integration of an local control station console (LCC)
- Integration of the Gun/FCS/LCC with the onboard experimental CMS

Prototype

Safety

Gun and ammunition safety devices and features:

- Firing logic
- Eliminate hot gun/cook off
 - ✓ revolver drum cooling
- Safe fuzing (no battery, no galvanic interface)
- Barely no HE (0.9g) in Ahead ABM projectile
- Firing- Arcs
 - ✓ mechanical stops
 - computer controlled firing arc limit
- Firing pin lock
- Auto misfire ejection hang fire

Manning and Maintenance

Reduce manning

- No man on mount
 - ✓ Controlled and fired by one operator
- Maintenance and reload by two sailors
- Pre/post firing requires minimum skill

Reduced Maintenance

- Maximum BIT implementation
 - ✓ Off board health monitoring & diagnostics
- Minimize auxiliary systems
- Graceful swap-out/cross-deck
 - ✓ ISO = 30 minutes install/remove
- Rationalized tool sets

Conclusion

- Demonstrated the proof of concept
- Multiple advantages -virtually no disadvantages
- High payoff engineering and design enhancements
- Engineering and design synergy
 - ✓ risk of new features and improvements
 - ✓ mitigated by substantial increases in performance, maintainability and safety
 - modular menu is based on natural progression/collection of design technology

