ADVANCED MODULAR GUN

Developing Tomorrow's Weapon Systems with Today's Technology

Presented by Applied Ordnance Technology and NSWC Dahlgren

41st NDIA Gun and Missile Systems Conference Sacramento, CA March 2006

Third Installment

3 Years, 3 Tests, 3 Presentations

FY03 Proof-of-Concept Test

Verified

Internal Sealing Concept

FY05 Dynamic Setback Test (DST)

Verified

- Full-Size Sealing Concept
- 50 Liter Chamber
- Coupling Components

FY06 Barrel Joint Test (BJT)

Verified

- Barrel Joint
- Modified Chambrage Seal
- High-Voltage Ignition Scheme

Outline

- AMG Program Overview
- Barrel Joint Test (BJT) Fixture
- Instrumented Pusher Assembly (IPA)
- Barrel Joint Testing
- Current Status
- AMG Program Summary

AMG Program Overview

Provide the DoD community with a test gun for advancing gun technology in the areas of hypersonic and long range projectiles, advanced propellants, barrel materials, and gun and projectile instrumentation.

- Modular •
- Large Caliber
- High Performance
 - Hypervelocity •
 - Transportable •

Project Engineering

- Design
- Modeling
- **FEA Analysis**
- **Drawings**
- **System Integration**
- **Procurement/Logistics**
- **Technical Data Package**
- **Configuration Management**
- **Procedures Assembly/SOP**
- Test Plan/Support

Turning Ideas

BJT Fixture

- 5.2-in. Bore
- Smoothbore Barrel Segments
- 65 Caliber
- Large Volume Chamber
- Unique Chamber/Barrel Coupling Mechanism

BJT Fixture

BJT Fixture

- MODULAR •
- 88% BJT Built from DST •
- Configurations Reversible •
- Continue to Add to Existing Test Fixture •

DST Fixture

BJT Fixture

Instrumented Pusher Assembly

Objective:

- Capture Interior Ballistic Data
- Begin working on instrumentation package for high-G, high-velocity environment.

Methodology:

- Leverage ARL Instrumentation Expertise
- Utilize Existing, Gun-proven Sensors and TM Solutions
- Embed Instrumentation in a Modular Fashion

IPA on Display at ARL's Booth

Primary Objectives:

- Evaluate Barrel Joint
- Verify High Voltage Ignition Scheme

Secondary Objectives:

- Evaluate Modified Chambrage Seal
- Evaluate Obturator
- Demonstrate Repeatable Chamber/Barrel Mating

Test Results:

- Conducted 19 Shots
- 10 shots 98,000 to 103,000 psi
- 10 shots 3,900 to 4,050 ft/s
- Barrel Joint sealed
- Repeatable Charge Performance
- Good IB Data from IPA
- No Blow-By on Chambrage Seal
- Excellent Obturation
- Repeatable Chamber/Barrel Mating

Muzzle Blast from BJT Testing (from NSWC-Dahlgren PRTR)

Charge Performance:

- NACO
- Repeatable Peak Pressures for a Given Charge Weight
- Evaluated a Combustible **Case and a Cardboard Case**
- 6 shots CCC (5 at 100 KSI)
- CCC add 10 KSI in pressure and 125 fps in velocity over a cardboard case

Typical P-t Curve for Cardboard

Typical P-t Curve for CCC

IPA Data:

- 2 shots
- Correlates with Pressure Data on Gun

Normal Speed Views of Test Shots

High Speed Muzzle View of a Test Shot

Upcoming Test

Currently designing Propellant Characterization Test (PCT) Fixture:

- 5.2-in./105-caliber, Smoothbore
- Add Stand, Recoil & Chamber Handling to BJT Components

Objectives:

- Characterize Advanced Propellants
- Increase Performance
 - 5,500 ft/s
 - 25,000 G's

Upcoming Test

Currently Designing Instrumented Subcaliber Projectile

Objective:

- Capture Complete Ballistic Cycle (IB to Impact) such as P-t, **Acceleration, Balloting, Thermodynamic Heating**
- Use similar instrumentation package as IPA

Advantages:

- Less Obtrusive/Safer Method of Data Acquisition
- No PV Instrumentation Needed
- Simple Data Capture for Future Projectiles Irrespective of System

AMG Program Plan FY06 FY07 FY08 FY09 Q2 Q3 Q2 Q3 Q4 Q1 Q4 Q1 Q2 Q3 **Q4** Q1 Q2 Q3 Q4 **Barrel Joint Test** Instrumented Full-bore Test Slug **Propellant Characterization Test** Instrumented Sub caliber Test Slug Limited Performance Test, Elevated Shots Instrumented Long Range Projectile High Performance Test, Horizontal Instrumented Hypersonic Projectile High Performance Test, Elevated Shots Instrumented LR, Hypersonic Projectile

AMG Summary

5.2"/65-cal. Muzzle Velocity: 4,000 ft/s Available Now!

5.2"/105-cal. Muzzle Velocity: 5,500 ft/s Available FY07 Q1

5.2"/190-cal. Muzzle Velocity: 7,200 ft/s Available FY08 Q2

AMG Applications:

- √ Hypervelocity Projectiles
- ✓ Endo-Exo Flight Analysis
- ✓ High-G Instrumentation
- ✓ Long Range Projectile Development
- ✓ High Velocity Terminal Effects
- ✓ Advanced Gun Propellants
- New Propulsion Technologies
- Wear & Erosion Mitigation Methods
- Advanced Gun Barrel Technology

Additional Information

At the Conference: Mark Adams, AOT **Steve Adams, AOT** Pete DiBona, AOT Phil Peregino, ARL R.D. Cooper, NSWC-DD **Brett Kowalczyk, NSWC-DD Shane Sisemore, NSWC-DD** Jason Budd, NSWC-IHD

Applied Ordnance Technology, Inc. 103 Paul Mellon Court Waldorf, MD 20602 301.843.4045 www.aot.com Steve Coladonato, PM scoladonato@aot.com

AMG – BJT Configuration

