Multi-Mode Precision Strike Weapons

WB &B Whitney, Bradley & Brown, Inc.

- The Need for Multi-Mode Guided Weapons
 - ∠ Definitions what do we mean by multi-mode?
 - *⊯* 60+ years of increasing precision but we're not there yet
- Identifying the Gaps in Capability
 - ✓ Target Set Coverage
 - *K* Targeting infrastructure performance
 - Precision engagement of movers in weather, clutter & ROE the Holy Grail
- Filling the Precision Strike Gap
 - ∠ Precision Self & 3rd Party targeting

 - ∠ Weapon Data Links
- Implications and Issues
 - **What technology, with the right TTP, might provide solutions?**

Single & Multi-Mode Precision Weapons

- Single Mode
 - ∠ Semi-active Laser
 - GBU-12/16/24, etc.
 - ∠ GPS/INS (CSW)
 - GBU-31/32 JDAM

- Multi-Mode
 - ✓ Semi-active Laser + GPS/INS
 - Enhanced Paveway II/IV
 - Laser JDAM
 - ∠ IR terminal seeker + GPS/INS
 - JSOW Unitary
 - Solution State Sta
 - Tactical Tomahawk

Air Armament: **A Capability Transformation Success Story**

0 mils 1991 1999

~100 mils

Dispersion:

1500 B-17 sorties 9000 bombs (250#) 3300 ft CEP One 60' x 100' target W.W.II

(b) (b) (b)

(1) (1) (1) (1) ni ani ani ani

an an an an

(1) (1) (1) (1)

~20 mils

30 F-4 sorties 176 bombs (500#) 400 ft CEP **One Target** Vietnam

~0.6 mils

1 B-2 sortie 16 bombs (2000#) 20 ft CEP 16 Targets per Pass All Weather

Dispersion in Aerial Gravity Bombing

Typical Bombing System Error Sources for "Dumb" Bomb Delivery

• Wind error

- Pre release INS Velocity error
- TAS errors - Post release
 - Post release Shear
 - Atmospheric model vs. actual conditions

• Dispersion error

- Ballistic table errors
- Weapon manufacturing variability
- Ejector rack timing/velocity
- Angle, range or velocity measurement error
- Boresight error
- Incorrect aimpoint by crew
- G or sideslip
- INS velocity, TAS or Altitude error
- Range sensor errors & limitations Beam width, graze angle, FOR, resolution, pointing, etc

Typical automated freefall bomb system dispersion today is ~ 6 mils

Dispersion in Laser-Guided Bombing

stabilization, etc

Typical automated LGB system dispersion is ~ 0.6 mils

- ~1 Order of magnitude improvement in effectiveness for cost of FLIR + LGB kit

B Dispersion in GPS Guided Weapons (CSWs)

• CEPs for GPS/INS guided weapons are a function of targeting accuracy, current local GPS performance, and weapon kit guidance & control performance:

```
Generally, CSW CEP = \sqrt{(TLE)^2 + (GPS)^2 + (G\&C)^2}
```

Difference between target's actual location and provided coordinates

(Preplanned JDAM spec \leq 7.2m CEP_{TLE} for 13m weapon CEP)

GPS accuracy at the time/place of the attack

Ability of weapon to hold the commanded flight path

- But the advantages are: all weather capability, and no dispersion (Fixed-target CEP is essentially the same regardless of range)

Strike Planning Begins with Target Set Analysis

Target, Weapon, & Mission Pairings Follow

Precision munitions currently cover the entire fixed target set, but can engage movers only with favorable target behavior and mission conditions

The Real Mission Environment: Weather in Operation Iraqi Freedom (OIF)

• 70% cloud free only 30% of time

 17 of 31 days good weather (clear to scattered clouds <10K ft)

- Requirements derived from current mission environment

 ✓ Frequent bad weather, many targets of opportunity
- In Operation Enduring Freedom/Afghanistan:
 - \measuredangle U.S. aircraft carried mixed LGB/JDAM loads
 - \measuredangle In clear weather used FLIR to self- target and designate LGBs
 - In IMC used ground controllers to supply target ID & coordinates
- Created US requirement for Enhanced Paveway II/Laser JDAM multimode (Laser+GPS/INS)

The UK has been well ahead of the US in both recognizing this multimode requirement and procuring a solution

The Challenge of Mobile Targets

Implications of Target Dwell Time

- US Army study for the ATACMS AoA classified mobility of moving targets by three characteristics

 — High - Moderate - Low mobility
- Study analyzed the response time necessary to put weapons on a target given an assumption as to its degree of mobility
 - Study assumed stable speed and direction of target movement

 50% of high mobility target set has an expected dwell time of < 45 minutes

Current targeting infrastructure and methodologies are not responsive enough for short-dwell targets (let alone movers)

- Stationary targets:
 - *⊯* Imagery mensuration or intel-based precision targeting:
 - Is too slow, not portable/fieldable, requires connectivity from controller/delivery platform to limited number of centers
 - Requires highly-trained targeteers with expensive equipment
 - - Is too imprecise at operationally useful ranges
 - Uses equipment that is expensive, heavy or both
 - Through-the-weather sensors lack sufficient resolution for positive ID, especially in clutter
- Moving targets:
 - Historical solutions (area/cluster weapons, stopping motion by striking choke points), cannot meet the high ROE standards we have set with fixed-target precision strike
 - Real-time precision tracking has same problems as with stationary targets, but more acute
 - Laser designation may require excessive exposure
 - ✓ Must be able to do many-v-many

What Sensor Resolution is Required? Discrimination Requirements for Mobile / Relocatable Targets

Dimensions in "feet"

SAR Displays vs. Resolution

Even with high resolution, SAR requires precision velocity reference to achieve precise TLEs, and targets must be stationary

What Is It? Is It the Same Object?

ZSU-23/4

MSTAR Data Collection By Sandia Nat'l Laboratory

Zil-131

- 1 foot SAR
- X-Band
- 15 depression angle
- Spotlight mode

T-62

FLIR Image – Resolution Example

Wide Field of View

Relative or Self Target Coordinate Generation

- Z Targeting occurs in local GPS coordinate reference, relative to sensor position or another ground point (OAP or offset aimpoint)
 - Relative TLE will include both measurement error and current GPS error results require mensuration to obtain absolute WGS84
 - Relative measurement error (RME) is difference between actual and measured position relative to targeting platform, and includes errors due to sensor type,

- Analogous to air-to-air engagement in slower motion, except:
 - Shooter & weapon cannot maneuver below target
 - ∠ Huge increase in clutter
- Leads to two basic approaches:
 - Continuously track target, provide position updates to weapon at suitable rate using one or more data links (like tail control AAM)
 - Can be done with one or more onboard or off-board sensors
 - AMSTE program (Affordable Moving Surface Target Engagement) has demonstrated a direct hit on 30+ MPH truck using both JSOW and JDAM, using JSTARS & TACAIR or UAV tracking
 - Future networks could also enable ground tracking (e.g. UAV coupled with a weapon data link)
 - Add terminal seeker to weapon, use GPS to navigate into seeker acquisition box (like AMRAAM or Advanced Paveway)
 - Proposed by Joint Common Missile, probable for SDB Phase II
 - Positive ID in clutter still a problem if no MITL datalink is used

Notional Seeker – Are Seekers the Answer?

Resolution vs. ID Confidence Complicated by a Clever Enemy

- Operation Allied Force
 - "At night, when these groups heard a
 Predator or AC-130 coming, they pulled a
 blanket over themselves to disappear from
 the night-vision screen. They used low-tech
 to beat high-tech."
 - ≈ >50% Cloud Cover >70% of the Time
 - Unimpeded Airstrikes Only 24 of 78 Days
 - Extensive Enemy Use of Deception
 Techniques and Concealment

If a human observer at close range is uncertain about ID, how well can a remote sensor or seeker perform?

Interim Solutions: Litening Pod Downlink & ROVER

- Sensor downlink from Harrier and Hornet
 - Developed by US Marine Corps for offensive air support missions (CAS, ground aided strike)
 - ✓ Supplies GCE video feed of aircraft targeting sensor or UAV

Litening Pod Video Downlink Capability

- USMC downlink Litening Pods in OIF

 5 Pioneer/9 Predator Pods
- 43 Rover stations in theater
 - ✓ Other organic receive stations (MRS, RRS,GCS)
 ✓ Access to UAV feeds
- New ways to employ
 - Convoy Escort / ISR (1000+) combat missions

• Benefits

- Increased GCE SA (Situational Awareness)
- ✓ Very effective against stationary targets

Actual ground display

In-flight or Field Registration of Tactical Imagery

- Registration software ID's common features in two images
- Tactical image "controlled" to reference via edge/feature matching
- ✓ Algorithm identifies and links image "tie points"

Tactical Image

Reference Database Image

Precise geo-coordinates of any tactical imagery feature available once controlled to reference image

Current Application: Precision Strike Suite for Special Operations Forces (PSS-SOF)

Auto Mensuration of Tactical Image ∠ ~10 minutes ∠ Targets present/observable ∠ ~10 meter TLE for field forces

Reference Database on Laptop

- ✓ Targets not present
- Created/uploaded prior to deployment
- Precisely geo-referenced

What About the Future? Building a Networked System of Systems

- Joint AF/Navy Weapons Data Link Network ACTD – Desired capabilities:
 - See Weapon In-Flight Target Update
 - Weapon Retargeting
 - 🗷 Weapon In-Flight Tracking
 - **K** Weapon Bomb Impact Assessment (BIA)
 - ∠ Weapon Abort

- DARPA Quint Network Technology ACTD Hardware and architecture to link:
 - ✓ Tactical Aircraft
 - Dismounted ground forces

 - ∠ Armed UAVs
 - Precision weapons

How Achieving "The Grail" Could Look

- In the end, MultiMode weapons are only part of the answer for moving and relocatable targets
- Must be able to <u>target & track movers</u> precisely, <u>ID</u> <u>confidently</u>, with <u>acceptable Collateral Damage</u>, <u>through the</u> <u>weather</u>, <u>in cluttered</u> environments, with many v. many engagements at once
- Over & above the weapons, this will require:
 - *K* Persistent observation at high resolution
 - ✓ Precise track generation
 - A common network between ground observers, targeting and delivery platforms, and weapons
- We have some distance to go
 - But programs such as the DARPA Quint Networking Technology (QNT) ACTD could be a fair start