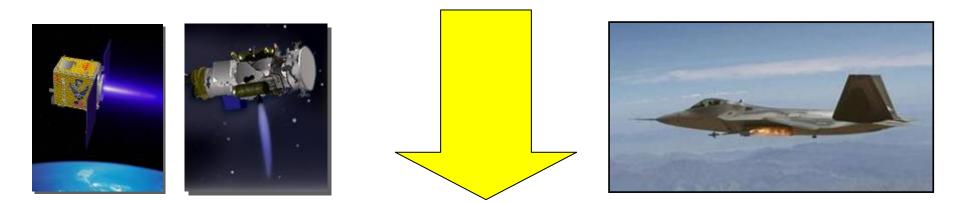
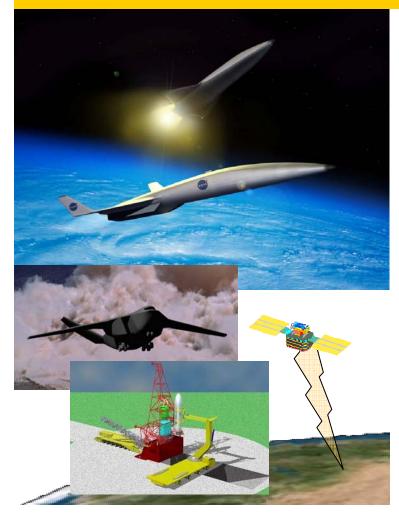


Overview


- AFRL Focused Long Term Challenges (FLTCs)
- Responsive spacecraft
- Responsive lift
- Responsive range
- Opportunities for industry collaboration

AF Technology Vision CORONA Top, Jul 05

Anticipate, Find, Fix, Track, Target, Engage, Assess – Anything, Anytime, Anywhere


Energized By Focused Long Term Challenge (FLTC) Plans

Timely Deployment of Flexible Ground & Space Capabilities for the AOR Commander

- Rapidly Constitute Multi-Mission, Affordable Tactical Satellites
- Rapidly Deploy Multi-Mission, Affordable Space Payloads
- Generate On-Demand, Reusable Affordable Space Access
- Rapidly Checkout Spacecraft
- Globally Project Ground Forces Anywhere in Any Weather
- Globally Move, Manage and Process
 Information in Real Time

FLTC 7–On-Demand Theatre Force Projection, Anywhere Attribute Forecast

Rapidly Developed Tactical Satellites

- Modular s/c Bus
- Agile Orbit Transfer

Rapidly Developed Payloads

- Plug-n-Play Payloads
- Reconfigurable Components

Hybrid Responsive Space Access

- Rapid Turn 48 Hrs
- 3x Lower Ops Cost
- Vehicle Reliability .995

Rapid S/C Checkout & Autonomous Ops

- Autonomous Mission Operations

Rapidly Developed Tactical Satellites

- Enhanced Capability Microsats
- Rapid SC/LV Mate & Transport
- Collaborative Microsatellite Clusters

Rapidly Developed Payloads

- Reconfigurable Monolithic

Sensor/Processor Subsystems

Fully Reusable Responsive Space Access

- Rapid Turn 24Hrs
- 10X Lower Ops Cost
- Vehicle Reliability .999

Rapid S/C Checkout & Autonomous Ops

- Autonomous Mission Management

- **Rapidly Developed Tactical Satellites**
- Flexible Printed Satellites
- Nanosatellites

Rapidly Developed Payloads

- "Morphable" RF & EO Sensor Systems
- Monolithic EO Sensor (Sensor, Laser Cooler, Readout, Processor, & Protection on a Chip)

Fully Reusable Responsive Space Access

- Rapid Turn 4hr
- 100X Lower Ops Cost
- Vehicle Reliability .9998


Rapid S/C Checkout & Autonomous Ops

- Anticipatory Mission Planning/Ops
- Automated On-Orbit Servicing

Baseline – long leadtime microsatellites, non-responsive launch

Near Term (thru 13)

Mid Term (14-18)

5

Multi-Mission, Low-Cost, Rapidly Developed Tactical Satellites

Modular approach Plug 'n Play • Standard interfaces Rapid design/ass'y	 Far-Term Vision Rapid integration of new payloads & technologies using PnP architecture <\$30M total mission cost < 12 month acquisition cycle Direct theater downlink and tasking Call up to operation < 6 days
 <u>Technology Challenges</u> Responsive avionics & software Getting fast software faster Responsive/modular spacecraft bus Driving responsiveness down the modular hierarchy Extreme miniaturization Driving mass fraction of S/c bus down & performance up Reconfigurable communication Satellite system design & test tools 	Mid-Term Demonstration (2013) • Assemble TacSat bus and integrate with payload within one week • Structure • Power system • Propulsion • Avionics • Software In InventoryProduced in QuantityEmployable in Hours

Multi-Mission, Low-Cost, Rapidly Developed Payloads		
Plug 'n play payload components and subassemblies	 <u>Far-Term Vision</u> The "real deal" PnP Ability to assemble payload within a day Eliminate custom interfaces, wiring harnesses, etc 	
 <u>Technology Challenges</u> Large, high-performance, light-weight RF apertures High-performance, light-weight mirrors and telescopes Advanced EO front-ends Advanced RF front-ends Miniature, high-performance signal/fusion processor Reconfigurable sensors/electronics 	Mid-Term Demonstration (2013) • Integrate TacSat payload within one week • Apertures • Front-end • Control and Processing • Bus Interface	
Reconfigurable sensors/electronics	7	

Rapid S/C Checkout and Autonomous Operations **Far-Term Vision** Near immediate availability following Autonomous on-board mission manager Target autonomous checkout/ **Intelligent sensor control** Location, etc. Fault detection, isolation and resolution Task decomposition and management Lights out ground operations • **Opportunistic real-time sensor control** • **Optimize data collection and downlink On-orbit** planner **Collaborative decision making across multiple** • R T I I satellite bodies **Technology Challenges Mid-Term Demonstration** (2012) • On-orbit processing of sensor data **On-orbit checkout** - 80% percent of ISR data processed **Development of algorithms to support** complex missions/vehicles Autonomous re-tasking of satellite based on processed sensor data **On-board planning and reconfiguration** ٠ On-board cross-cueing between sensors **Autonomous mission managers** • - At least two sensors working cooperatively Inter-satellite/object collaboration ٠ Autonomous TacSat two ship performing **On-orbit robotic refueling, reconfiguring,** • complex mission and repair

Generate On-Demand, Reusable Affordable Space Access

	 <u>Far-Term Vision</u> Horizontal takeoff/landing fully reusable vehicle Turbine Based Combined Cycle (TBCC) 1st stage Rocket Based Combined Cycle (RBCC) 2nd stage Up to 40K lbs to LEO Rapid turn, 4 hrs or less 100X lower ops cost Vehicle reliability 0.9998 All weather availability 1000 sortie airframe
 <u>Technology Challenges</u> Reusable, long-life, operable propulsion, airframe, thermal protection systems (TPS) and seals repairable in hours with 100s mission life Low cost, reliable expendable upper stage Autonomous and adaptive GN&C for take-off, ops & landings 48 hour call-up mission planning Highly reliable Integrated System Health Monitoring for in-flight trajectory modification 	Mid-Term Demonstration• ARES hybrid launch vehicle (2017)- reusable 1st stage vertical takeoff- 10K lbs to LEO• Reusable 2nd Stage (2025)- RBCC- 40% P/l increase• Reusable horizontal takeoff 1st stage (2025)- TBCC- Flexible basing 10K lbs to LEO9

Responsive Range

Technology Challenges

- Robust, low-cost flight termination system
 - Autonomous flight safety systems
 - Space-based communications
 - GPS/INS to eliminate need for groundbased tracking assets
 - Eliminate components that need to be recertified and tested on a regular basis
- Rapid trajectory analysis
 - Optimizing trajectories in real time
 - Rapid calculation of range safety corridors
- Unmanned surveillance tools for continuous observation of launch area
- Autonomous Flight Safety System
 - Rule-based logic to emulate human-in the-loop flight safety decision processes
 - Flight qualification and range safety certification
- Transportable/deployable range assets
 - Integrating assets with existing ranges
 - Maintaining assets in a state of 10 readiness to support responsive missions

- Broad Agency Announcement http://vsearch2.fbo.gov/servlet/SearchServlet
- Small Business Innovative Research

http://www.sbirsttrmall.com/Portal.aspx

Cooperative Research and Development Agreements

http://www.vs.afrl.af.mil/TechOutreach/TT/CRADA.aspx

Dr. Peter Wegner AFRL/VS Responsive Space Tech Area Lead (505) 853-3486 Mr. Roger Shinnick AFRL/VSK Chief, Space Vehicles Contracting Division (505) 846-2664

Major Debra Fogle	Dr. Jim Lyke	Mr. Maurice Martin
AFRL/VSSV	AFRL/VSSE	AFRL/VSSV
Program Manager, Responsive Space	Principal Electronics Engineer	Modular Bus Program Manager
(505) 853-3247	(505) 846-5812	(505) 853-4118

Colonel Rex R. Kiziah Materiel Wing Director, Space Vehicles (505) 846-6243 www.vs.afrl.af.mil