

Army Science & Technology

NDIA
Army S&T Challenges for Current and
Future Forces
April 19, 2006

Mary J. Miller
Director for Technology

Office of the Assistant Secretary for Research & Technology

Purpose

Provide an overview
of the Army's S&T program challenge to
develop technologies that will enhance
the Current Force while concurrently
enabling the Future Force

Outline

- Army S&T Overview
 - Vision
 - Strategy
 - Warfighter is our Customer
- Army Investment
- Support to Future Force
- Basic Research
- Manufacturing Technologies

Capabilities for a Joint and Expeditionary Army

Current Force

~100 lb. load

70+ tons

< 10 mph

Enabling the Future Force

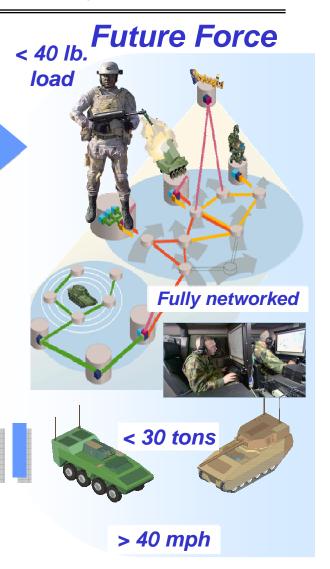
Science and Technology—

develop and mature

technology to enable

transformational capabilities

for the Future Modular Force


while seeking opportunities

to accelerate technology

directly into the Current

Modular Force

Enhancing the Current Force

Army Strategies

United States Army 2004 ARMY TRANSFORMATION The Army in Joint Operations Capstone Concept 7 April 2005

"...change in time of war must deal simultaneously with both current and future needs"

"...provide dominant land power to the Joint Force now and into the future."

"The FCS further encompasses a set of technologies and capabilities that will spiral into the entire Army as they mature. Networked C4ISR, precision munitions, and advanced fire control will also be key enablers."

Technology Area Investment FY07 \$1.7B

ISR \$166M

C4 \$128M

Lethality \$190M

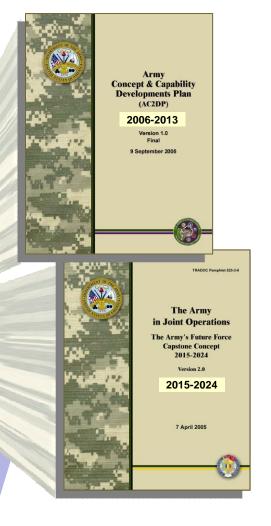
Medical \$132M

Unmanned Vehicle \$130M

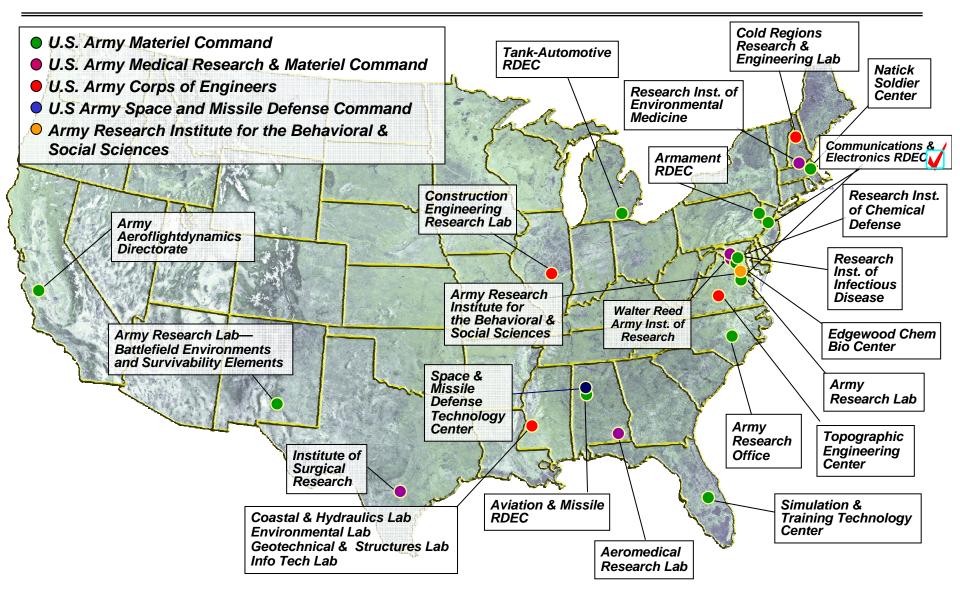
Soldier \$122M

Logistics \$92M

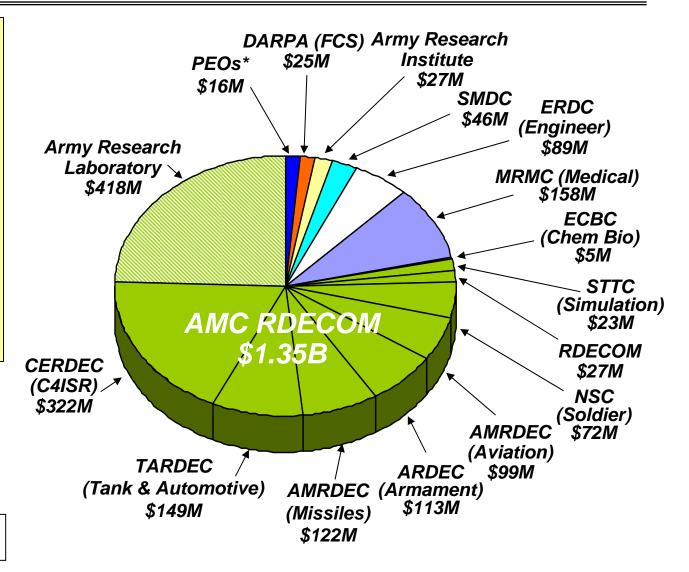
Classified \$54M


Mil Eng & Env \$49M Advanced Simulation \$42M Rotorcraft \$37M

Basic Research \$312M


Enhancing the Current Force

Future Combat System \$302M

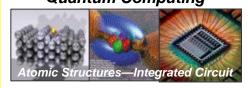

Army Research, Development & Engineering Centers and Laboratories

FY07 Army S&T Investment Perspective

Lab	FY07
Army Research Lab	\$418M
CERDEC (C4ISR)	\$322M
MRMC (Medical)	\$158M
TARDEC (Tank & Automotive)	\$149M
AMRDEC (Missiles)	\$122M
ARDEC (Armament)	\$113M
AMRDEC (Aviation)	\$99M
ERDC (Engineer)	\$89M
NSC (Soldier)	\$72M
SMDC	\$46M
Army Research Institute	\$27M
RDECOM	\$27M
DARPA (FCS)	\$25M
STTC	\$23M
PEOs*	\$23M
ECBC	\$5M
FY07 S&T Total	\$1.7B

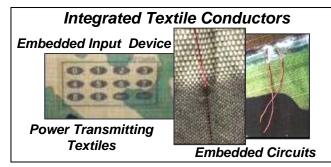
*PEO-Ammo (\$10M, OSD devolved) PEO-IEW (2 ACTDs)

3 Different Types of S&T Investments


Basic Research, Applied Research, Advanced Technology Development

S&T FY07 \$1.7B

Development


Acquisition

6.1: Basic Research \$312M (18% of S&T— 5% OSD Directed) Physics-Based Modeling Quantum Computing

- <u>Understanding</u> to solve Army-unique problems
- Knowledge for an uncertain future

6.2: Applied Research \$685M (40% of S&T)

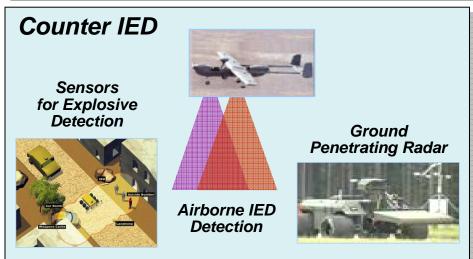
- Applications research for specific military problems
- Components, subsystems, models, new concepts

6.3: Advanced Technology

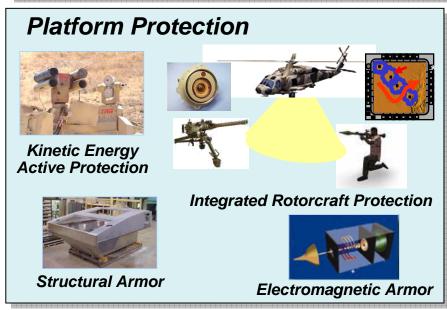
Development
\$722M (42% of S&T)

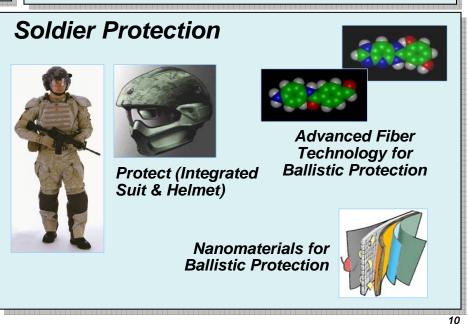
Flight Demonstration

- Demonstrate technical feasibility at the system and subsystem level
- · Assess military utility
- Path for technology spirals to acquisition—rapid insertion of new technology

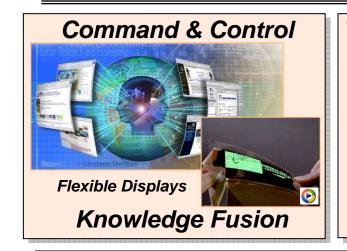

9

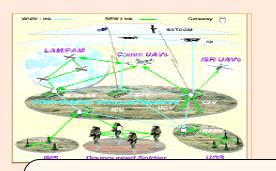

ATO-Rs—Army Technology Objectives—ATO-Ds


Far Term Mid Term Near Term

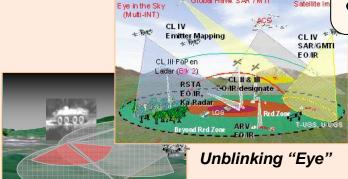


Future Force—Force Protection





Future Force—ISR and C4



Tactical Mobile Networks

- Find the Enemy
- Assured Comms
- Battle Command

Persistent Sensor Coverage

3rd Gen Infrared Sensors

MOUT Situational Awareness

Through Wall Sensing

Advanced Antennas Survey Lord Professor Parage (1987) Tractical Network & Communications Antennas

C2 in Complex & Urban Terrain

Unmanned Aerial Vehicle (UAV) Sensor Mission Equipment Packages

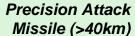
Future Force—Lethality

Missiles

Smaller, Lighter, Cheaper (SLC) Missiles

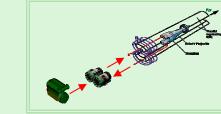
- Precision/ Maneuverable Urban Weapons
- Lighter/ Cheaper Manportable

Guns and Munitions


Multi-mission Capability

from a Single Platform

Nt 120mm Gun


Next Gen NLOS-LS and C3

Loitering Attack Missile (30-60 min)

Electromagnetic Gun... paradigm shift in propulsion

Mid Range

Munition

Future Force—Medical

Combat Casualty Care

Advanced Combat Casualty Litter System

 Self Contained Life Support System for Stabilization & Transport

 Optimal use of Resuscitation Fluids

Fluid Resuscitation Technology

Operational Medicine

Remote Health Monitoring & Assessment

Physiological Status Monitoring

Diagnostics to
Determine Soldier
Exposure to Industrial
Chemicals/ Materials

Infectious Disease

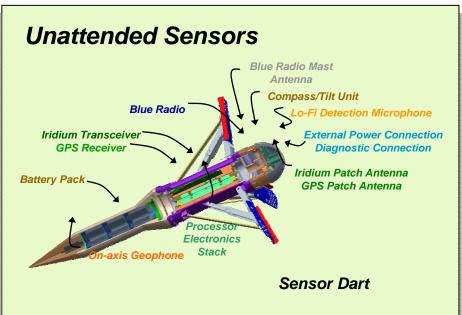
Indicators of Toxic Exposure

Drug/Vaccine Development

- Scrub Typhus Vaccine
- Sand Fly Control Preventive Medicine System
- Research into Hantaviruses & Hemorrhagic Fever

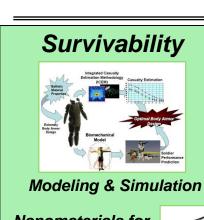
Preventi Treatme

Prevention & Treatment of Malaria

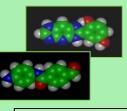

041906 Miller NDIA TT Brief Final

13

Future Force—Unmanned Systems



Soldier Systems



Stirling Engine

Advanced Fiber **Technology** for Ballistic **Protection**

Rations

Biosensor **Technology** for Food Safety

Future Force Warrior

Fused Thermal/ 12 Imagery

Strike (Exploit FCS **Netted Fires**)

(Integrated Suit & Helmet)

Robotics Interface

Collaborative

Networked

Situational **Awareness**

Advanced **Power Sources**

First Strike **Compact Ration**

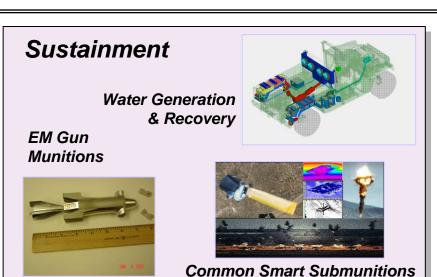
Sensors

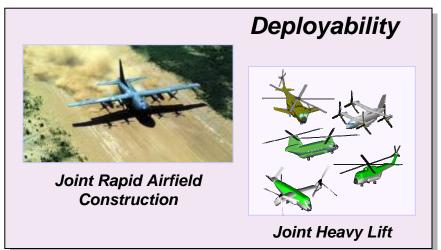
Photovoltaics & Electro-textiles

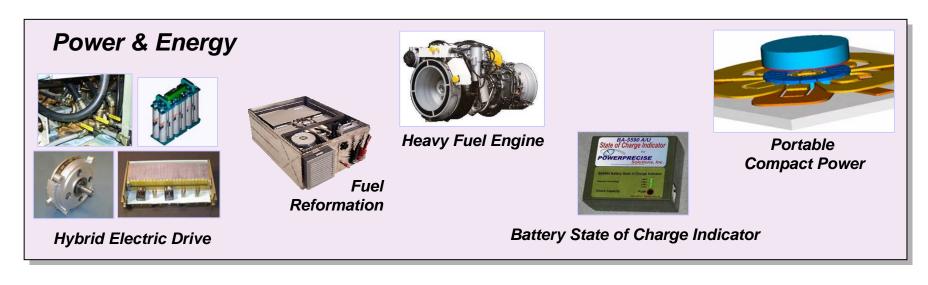
Embedded

Training

Physiological Status Monitoring


Uncooled IR Sensors for UAVs


Pointer



Future Force—Logistics

Future Force— Advanced Simulation/Personnel Technology

Training Simulation

Training
Methods &
Measures for
Better Decisionmaking &
Information Use

Training Future Force Small Unit Leaders & Teams

Embedded Combined Arms
Team Training & Mission
Rehearsal

Adaptive Learning Environments

Future Force—Rotorcraft

Survivability

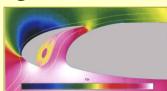
- Materials & Structures for Reduced IR Signature
- Adaptive Engine IR Suppression
- Super-lightweight Thermal Insulation
- EO/IR Countermeasures
- Hostile Fire Warning & Visual Cueing
- Affordable Directional IR Jamming

Joint Heavy Lift

Technical Feasibility

- Heavy Lift Vertical Take
 Off and Landing
- Concept Refinement
- 5 Contractor Teams
- Requirements Generation and Analysis

Engines & Drive Trains


- Lighter Weight Components
- · Increased Reliability
- Increased Fuel Efficiency
- Reduced Cost
- Reduced Vibration

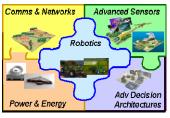
Rotors & Flight Controls

- Hybrid Rotor
- Optimum Speed Rotor Evaluation
- Reduced Weight/ Vibration
- Reduced O&S
- Intelligent & Active Controls
- Improved Reliability and Durability

Basic Research

<u>University Single</u> Investor Program

- Solid State Physics
- Structural Mechanics
- Electro-magnetics
- · Materials Science
- Innovative Countermine

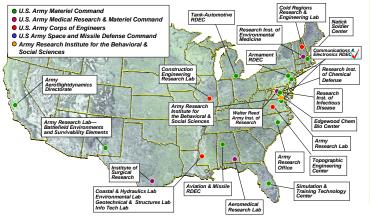

<u>University Research</u> <u>Initiative (Devolved)</u>

- Multidisciplinary Research
- DURIP

Low

High

Collaborative Technology **Alliances** Centers for **Enduring** University Needs Research Scientific Initiatives **Understanding** Paradigm Shifting **Army Unique Capabilities** Laboratory Centers/UARCS Research Single Investigator Program From Understanding to Technology


<u>Collaborative Technology</u> Alliances

- Comms & Networks
- Robotics
- · Advanced Sensors
- Power & Energy
- · Advanced Decision Arch
- Network & Info Science ITA

In- House Research

Institute for Soldier Nanotechnologies

<u>Paradigm Shifting</u> Capabilities Centers/UARCs

Institute for Collaborative Biotechnologies

Institute for Creative Technologies

<u>University Centers</u> for Enduring Needs

- Microelectronics Center
- Vertical Lift Center of Excellence
- · Materials Center
- · Automotive Research Center
- High Perf Computing
- HBCU/MIs with Battle Labs

041906 Miller NDIA TT Brief Final

Manufacturing Technology

<u>Armor</u>

- Low-cost Composites FY06-09
- Appliqué Armor FY07-09
- Low Cost Titanium Mfg FY06

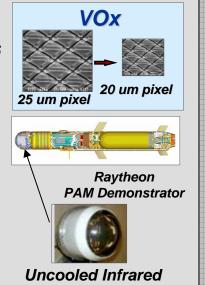
Composite Structural & Appliqué Armor Integration

Electronics/Power Systems

- S/W Radios FY06-09
- Silicon Carbide Switches FY06-09
- Phase Shifter FY06-08
- Power Storage Systems FY06-09

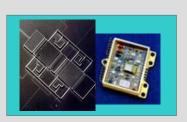
Module

FIG. Of Network Communications
Communication Exercises
Fig. 18 Communication
Fig. 18 Com


Common SDR Core Transceiver

Sensors

- Dual Band FPA Cooled FY06
- Flexible Display FY06-09
- Uncooled FPA FY06

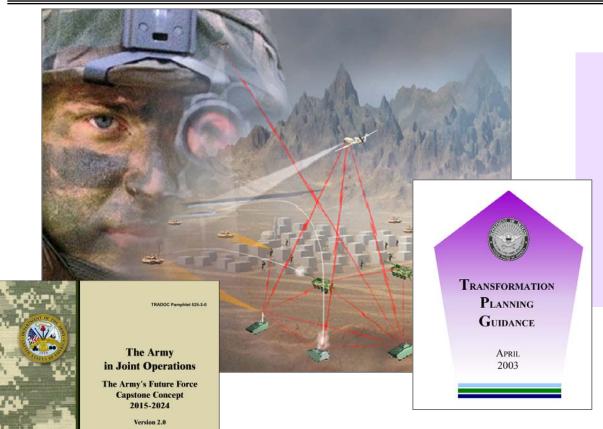


Flexible Display Initiative

Munitions

- MEMS-IMU/GPS FY06-07
- MEMS Safe & Arm FY06-07
- Durable Gun Barrels & Armaments FY06-06

MEMS-IMU


Lightweight 120mm Gun

155mm NLOS Cannon

The Army...

Transforming while at War

"...this may mean making the difficult decision of foregoing currently planned systems and investing instead in capabilities that we believe will reduce future risk."

Secretary Rumsfeld

"The FCS further encompasses a set of technologies and capabilities that will spiral into the entire Army as they mature. Networked C4ISR, precision munitions, and advanced fire control will also be key enablers."

041906 Miller NDIA TT Brief Final

7 April 2005