Ruptured Case in the M249 SAW

A Finite Element Analysis

Who am I?

Clinton Fischer

Weapons Systems and Technology Weapons Technology Branch

RDECOM-ARDEC
Picatinny Arsenal, NJ 07806-5000

Introduction

Modeling and Simulation saves time and money

 Impractical to do real world tests on some failures

What Happened

 Incidences of the M855 cartridge case rupturing during normal firing of the M249 Saw

 Cause was unable to be determined during live fire

What Do We Need to Know

Do the tolerances of the cartridge case need to be more stringent?

If so, which tolerances are causing the problem; and how much do they need to changed?

What Can Contribute

Separate Tolerances

Tolerance Stack-Up

Hardness Gradient

Setup

Geometry

Internal Pressure from Propellant

Extraction taken from T-D Curve

Materials – Brass Hardness Gradient

Preliminary Modeling

- Axi-symmetric Model
- Several scenarios were considered

Observations

- No rupture in nominal case
- Longitudinal stretching causes rupturing
- All hardness gradients ruptured at same location and time

Secondary Results

- 3d Results corresponded to axi-symmetric models
- Brass material validated to 0.08% error

Conclusions

- Space between the back of the case and the Bolt Face causes case rupturing
- Weapon head space is measured, case tolerance is limited to -0.006in
- Head space gauges measured in 0.002in increments

What can be Learned

 Most cartridge cases are generally the same shape so will behave approximately the same way