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Introduction

* Aerodynamic prediction methodologies and requirements

 The virtual wind tunnel technique

* Recent applications

* M855 Aero
« Effect of rifling grooves

- Effect of base geometry

 Conclusions
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Aerodynamic Prediction Methods

 Fast-design codes
* Prodas, AP02 (Navy), Missile DATCOM (Air Force)
« Semi-empirical techniques
« Good predictions if design is within the database
 Static aerodynamics (drag, pitching moment) better
than dynamic aerodynamics
« Some geometric aspects not considered

« Computational fluid dynamics
 High-fidelity physics
* More capability for assessing geometric details
« Complete static/dynamic aerodynamic capability now
available
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Requirements for Small Caliber
Aerodynamics Analyses

Desired Analysis Required Aerodynamics | Predictive Capability
Point-mass Trajectory Drag vs. Mach number Steady Aerodynamics
(Gravity drop, velocity (Two-dimensional)

decay, wind drift)

Gyroscopic Stability Pitching moment vs. Steady Aerodynamics
(Rifle twist rate) Mach number (Three-dimensional)

Dynamic Stability, Trim Full static and dynamic Unsteady Aerodynamics

Angles, 6DoF Trajectory | aero; Magnus and pitch-
damping moments
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Observations on Free Flight Motion

Free flight angular motion is complicated

* Damped epicycle
* Time-dependent motion
« Characteristic frequencies/times

» Spin rate
* Fast mode frequency
« Slow mode frequency
* First two frequencies driven by rigid body

dynamics, not aerodynamics!

* |s it necessary to duplicate this motion to get the

aerodynamics?

— @ Aerodynamics Branch
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Approaches for Determining
Aerodynamics

!

Virtual Fly-Out Technique

Virtual Wind Tunnel Technique

Mimics aeroballistic range tests

Computational analog of wind tunnel

Aerodynamics coupled to rigid body
dynamics (RBD)

e Time-scales driven by RBD
Single time-scale for all aero

» Unsteady/time-dependent flow

Aerodynamics independent of rigid
body dynamics (RBD)

* Time-scales driven by aerodynamics
* Multiple time-scales possible

» Steady-flow possible

Full nonlinear coupled aero (CFD) for
virtual fly-out, BUT if aerodynamics
are extracted from trajectory, aero
model required.

* Assumed form for nonlinear effects

» Potential coupling between nonlinear
Magnus/pitch-damping

Aerodynamics modeled as sum of
independent effects; pitch/yaw,
pitch/yaw rate, spin, spin/yaw coupling
*No assumed/pre-determined form for
nonlinear effects

*Independence of Magnus and pitch-

damping

Virtual Wind Tunnel technique should be more efficient
and provide better aerodynamics!

5/24/2006
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The Two Virtual Wind Tunnel
Experiments

The Pitch-Damping Experiment The Magnus Experiment

* All required aerodynamics needed to predict stabillity,
performance and free-flight motion can be obtained from
these two experiments.

» Key feature: Independent determination of pitch-damping

and Magnus — eliminates coupling found in aeroballistics
range experiments.
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2 Pitch-Damping Experiment
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* Two approaches possible
» Planar constant amplitude pitching
motion (unsteady flow — non-
axisymmetric geometries)

OR
« Coning motion (steady flow —
rotationally symmetric geometries)

 Predicted Aerodynamics
* Pitch-damping force and moment
 Static Aerodynamics (lift, drag,
pitching moment)

- @ Aerodynamics Branch é
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5.56mm MB55 Pitching Motion | 11 Jan 2006 |
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Magnus Experiment

Constant angle of attack,
constant spin rate

Steady flow for axisymmetric
bodies, unsteady flow otherwise

Predicted Aerodynamics
« Magnus force and moment
(Cross-coupling between angle
of attack and spin)
 Roll damping
« Static Aerodynamics (lift, drag,
pitching moment)

— @ Aerodynamics Branch
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5.56mm MB55 with Rifling Grooves | 3 Oct 2005 |
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Cmpa

Significance/Purpose:

* Virtual wind tunnel approach applied to

M855.

* Currently supporting Army Green Ammo

development efforts using this
methodology.

Nonlinear Magnus Moment
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Rifling Groove Effect

« At muzzle - flow aligned with grooves
» Downrange - projectile velocity slows faster than spin rate

* Projectile is “overspun”
« Effects spin-sensitive Magnus moment

Flow at Muzzle

Flow
Downrange

« An important focus: effect of engraving on aerodynamics
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Effect of Grooves on Magnus Moment
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Effect of Grooves on “Effective”
Magnus Moment Coefficient
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For 5.56mm ammo, slight offset in side moment affects Magnus

moment only at low spin rates. Demonstrates that special twist rate
guns (match spin) not required for aeroballistic testing!
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Effect of Base Geometry on Magnus
Moment/Trim Angles

Traditional Rounded Base

5/24/2006

Square Base
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Magnus Moment Distribution
Along Body - Round Base
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* Highly Nonlinear
variation with Angle of
Attack

« Trim angle ~ 2 degrees
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Magnus Moment Distribution
Along Body - Square Base
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Conclusions

* A fast and efficient methodology for aerodynamic
prediction developed for small caliber ammo

* Method is easily extended to medium/large cal
» Technique has been used to advance understanding of
small caliber aeroballistics

* Rifling grooves

« Base geometry

 Currently using approach within Green Ammo Program
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