
2R1

GRAND SYSTEMS
DEVELOPMENT TRAINING

PROGRAM
VERSION 10.1

The union of system engineering,
domain engineering, functional management,

and program management
for the greater good of the enterprise

and customer base.

VOLUME 2R
AN EFFECTIVE SPECIFICATION

DEVELOPMENT ALGORITH
Presented By

Jeffrey O. Grady

JOG SYSTEM ENGINEERING, Inc.

6015 Charae Street
San Diego, California 92122

(858) 458-0121
(858) 456-0867 Fax

jgrady@ucsd.edu or jeff@jogse.com
http://www.jogse.com

Copyright 2006

No part of this manual may be scanned or reproduced in any
form without permission in writing from the author.

i

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE
------------------ -- ---------
1 Specification Templates and DIDs 2
1.1 Enterprise Engineering Work 2
1.2 System Engineering Generic Work 3
1.3 Proposal Work That Prepares for Program Execution 4
1.4 Work Subsequent to Contract Award 6
1.5 The Preferred Templates 7
1.6 Modeling Work Product Capture Document 9
2 Structured Analysis 9
2.1 Traditional Structured Analysis 9
2.1.1 A System Defined 11
2.1.2 The System Environment 11
2.1.3 System Functionality 12
2.1.4 Performance Requirements Derivation and Allocation 15
2.1.5 Product Entity Structure 15
2.1.6 Allocation Pacing Alternatives 17
2.1.7 System Relations 18
2.1.8 Environmental Relation Algorithm 20
2.1.8.1 System Environmental Relations 20
2.1.8.2 End Item Service Use Profile 20
2.1.8.3 Component Environmental Relations 21
2.1.8.4 Environmental Impact 22
2.1.9 Specialty Engineering and RAS Complete 22
2.1.10 RAS-Complete in Table Form 24
2.1.11 Traditional Structured Analysis Summary 25
2.1.12 SDD Content and Format 26
2.1.12.1 Document Main Body 27
2.1.12.2 Appendix A, Functional Analysis 27
2.1.12.3 Appendix B, System Environment Analysis 27
2.1.12.4 Appendix C, System Architecture Analysis 28
2.1.12.5 Appendix D, System Interface Analysis 28
2.1.12.6 Appendix E, Specialty Engineering Definition Analysis 28
2.1.12.7 Appendix F, System Process Analysis 28
2.1.12.8 Appendix G, Requirements Analysis Sheet 28
2.1.13 Team Activity During Requirements Work 29
2.2 UML 30
2.2.1 Entry Analysis and Overview 30
2.2.2 The Connection Between Modeling Artifacts, Specification 32

Content, and Product Entities
2.2.3 Dynamic Modeling Artifacts Explained 35
2.2.3.1 Sequence Diagram 35
2.2.3.2 Communication Diagram 37
2.2.3.3 Activity Diagram 37

ii

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE
------------------ -- ---------
2.2.3.4 State Diagram 38
2.2.4 Structural Analysis 39
2.2.4.1 The Class 40
2.2.4.2 Class Relationships 41
2.2.4.3 Messages 42
2.2.5 Related Analyses 42
2.2.5.1 Specialty Engineering 42
2.2.5.2 Environmental Requirements 42
2.2.6 Specification Structure 42
2.2.7 Software Requirements Close-out 44
2.3 Opening the Analysis With DoDAF 45
2.4 Integrated Modeling 47
3. Requirements Management 51
3.1 Summary of Team Activity During Requirements Work 51
3.2 Requirements Tools Base 52
3.3 Recommended Specification Responsibility Pattern 53
3.4 Requirements Risk Management 54
3.4.1 Requirements Validation 54
3.4.2 Margins and Budgets 55
3.4.3 Risk Tracking 55
3.5 Verification Requirements 58
3.6 Specification Review and Approval 59

A APPENDIX A, PRESENTATION MATERIALS A-i
B APPENDIX B, SPECIFICATION DATA ITEM DESCRIPTIONS B-i

JOGSE System Specification Data Item Description B-1-1
JOGSE Hardware Item Performance Specification Data Item B-2-1
Description
JOGSE Software Requirements Specification Data Item Description B-3-1

NOTE

Exhibit B available from the lecturer by sending an email to
jgady@ucsd.edu and requesting it.

iii

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
------------------ -- ---------
1 Overall Process 1
2 Preparatory Steps 2
3 Proposal Team Work 5
4 Program Work 7
5 System and Hardware Specification Template 8
6 Overview of the Traditional Structured Analysis Process 10
7 Ultimate System Diagram 11
8 System Environment 12
9 System Context Diagram 12
10 Function Sequence 13
11 Function Decomposition 14
12 System Life Cycle 14
13 Traditional Requirements Analysis Sheet 15
14 Product Entity Structure 16
15 Juxtaposition of RAS and N-square Diagrams 18
16 A Geometric View of the RAS Complete 23
17 RAS-Complete in Tabular Form 25
18 The System Relationship 26
19 SDD Structure 27
20 Context Diagram 30
21 Unified Modeling Language Overview 31
22 Hierarchical Relationship Between UML Dynamic Modeling Artifacts 33
23 Sequence Diagram Example 36
24 Communication Diagram Example 37
25 Activity Diagram Example 38
26 State Diagram Example 39
27 The UML Classifiers 40
28 Structural Relationships 41
29 Association Adornments 41
30 Software requirements specification template 43
31 Evolving Product Entity Structure 45
32 DoDAF Development Sequence 46
33 Requirements Traceability Across the Gap 49
34 Modeling Over the Years 50
35 The Approaching Merge 51
36 Tools Environment 53
37 Risk Matrix 56
38 Program Risk Tracking Chart 56
39 Verification Traceability 57
40 Specification Review and Approval 59

iv

LIST OF TABLES

TABLE TITLE PAGE
------------------ -- ---------
1 Independent and Combined SDD Appendices 44
2 Risk Probability of Occurrence Criteria 56
3 Risk Effects Criteria 56
4 Program Risk List 57

1

An Effective Specification Development Algorithm
The first order of business on any new program is the identification of requirements that
collectively define the problem to be solved. This work can be completed in a timely and
affordable way producing a quality definition of the problem space in terms of the minimum
collection of requirements each one of which defines an essential characteristic of the system, or
item thereof, to be developed. The target we should shoot for is all of the essential characteristics
identified (no missed essential characteristics) and no unessential characteristics identified.
Success in this process can be encouraged by the enterprise developing a set of specification
templates and a corresponding set of data item descriptions coordinated with models selected to
accomplish the requirements work and an effective suite of tools within which to capture the
results. Every requirement that appears in every specification should be traceable to a model
artifact from which it was derived. Before embarking on a new program, the enterprise needs to
have selected this preferred set of models and tools and trained its staff to employ those models
effectively entering the results in the tools suite. Every specification released is printed from the
tools suite and should pass through a formal review and approval process as should any
subsequent changes to any specification. As the models create work products, commonly simple
diagrams, they should be saved in an organized fashion in paper or computer medias and
formally released so as to be available for future system phases and modification projects.

Figure 1 offers a view of the overall process within which the preparatory work and definition
activity that is discussed in the first section falls. Before entering a program, the enterprise
should have prepared itself for the requirements work that will have to be done. The enterprise
needs models to apply for the cases where the product is going to be implemented in computer
software and in hardware. Both cases are covered in this tutorial followed by a discussion of
integrated modeling.

Figure 1 Overall Process

2

1. Specification Templates and DIDs

Many system development organizations experience some difficulty in clearly identifying
appropriate requirements for inclusion in specifications they must develop and they find it
difficult to accomplish the work in an affordable and timely fashion. Over a period of the last
two years the author developed an algorithm for improving system development organization
ability in this work using templates and specially developed data item descriptions (DIDs). It
requires some work to prepare the functional organization to support programs and some work
on the part of proposal teams to accomplish initial analyses and extend the templates made
available from the functional system engineering department to provide program-ready data, and
work by the program teams starting with contract award and running through the period of time
while specifications are being developed.

The goal of this specification algorithm is to provide for affordable and timely enterprise and
program definition and documentation of new product technical requirements, the management
and maintenance of related data, and publication and subsequent configuration control of the
resulting documents.

The work required to implement the algorithm can be described in three preparatory steps: (1)
enterprise engineering work, (2) system engineering generic work, and (3) proposal team work.
The first two steps are illustrated in Figure 2. The numbers in the blocks coordinate with the
steps in the algorithm. Recommended functional department responsibility for accomplishing the
indicated tasks is noted at the lower left corner of the task blocks.

Figure 2 Preparatory Steps

1.1 Enterprise Engineering Work

Identify and staff an enterprise integration team (EIT) that is responsible for engineering the
enterprise common process and acting as the process integration and optimization agent during
its development and implementation on programs. The EIT should report to the enterprise
executive.

3

1.1.1 The enterprise, through the efforts of the EIT, must develop a common process
diagram that generically identifies all program work at a level of indenture that is adequate for
making clear what work must be commonly done and allocating the corresponding work
responsibilities to functional departments responsible for supplying programs with the necessary
resources to accomplish that work well.

1.1.2 Allocate all work on the common process diagram to functional departments forming
a task allocation matrix. This matrix establishes the requirements work that functional
departments must be prepared to do on programs and any training that the functional departments
are funded for and capable of performing must be focused on these tasks. This matrix covers the
whole enterprise capability but in this section we are focused on doing the requirements work.

1.1.3 Functional departments collect all work allocated to them and build department
manuals that explain what work must be done and provide links or descriptions for how to
perform this work. One of the departments will be system engineering that will have
responsibility for specification development and management on programs. For each task a
functional department has responsibility, that department must identify work products that will
result as a function of having accomplished the work on a program. EIT must integrate and
optimize the evolving functional department work descriptions and work product identifications
to ensure overall efficiency and effectiveness. All work products must have at least one user.
Work products must be linked to the common process diagram tasks. Specifications are an
example of a task work product and the work product of interest in this algorithm.

1.2 System Engineering Generic Work

1.2.1 To the extent that work products are documents, the responsible functional
department must prepare a template containing the basic structure of the document in terms of
generic paragraphing structure and calls for graphical images. In preparing for implementation of
specification development and management work on programs in general, the functional system
engineering department will select the specification standards that will be applied respecting the
common customer base of the enterprise. They will review these standards and associated data
item descriptions (DID), ensure that the system engineering department manual adequately
covers specification standards the enterprise has chosen to respect, and build a set of
specification templates (paragraph numbering and titles only), one for each kind of specification
that will commonly have to be prepared on programs.

1.2.2 For each specification template defined, the system engineering department will
determine one or more preferred modeling approaches for each kind of requirement in the
template. The modeling approaches encouraged are the following relative to the primary kinds of
specifications that will have to be developed:

System Specification Traditional Structured Analysis
Hardware Performance Specification Traditional Structured Analysis
Software Performance Specification, General Unified Modeling Language (UML)
Software Performance Specification, Database IDEF-1X
Software Performance Specification, DoD IS DoDAF

4

1.2.3 Map models to templates such that for any of the specification s listed above there is a
model identified for each paragraph of each specification. Ideally, all of the paragraphs of a
particular kind of specification would employ models from the same family as suggested in the
pairing above.

1.2.4 Map specialty engineering disciplines to specification templates in preparation for
program mapping of these disciplines to specific product entities as a means of directing
specialty engineering requirements analysis work.

1.2.5 For each template and model combination, prepare a DID communicating how the
analyst will prepare the specification using a particular modeling approach and template. The
DID must clearly show the connection between the modeling artifacts and the template
paragraphing structure. The DID paragraphing structure must coordinate with the modeling
components that are intended to yield derived requirements.

1.2.6 Map the functional departments that will be responsible for performing requirements
analysis on programs to the template paragraphing structure for each kind of specification telling
where the programs will acquire the analysts to accomplish the specification development work.

1.2.7 Prepare a template and DID for a system definition document (SDD) within which
program structured analysis work products will be captured and configuration managed. These
work products are to be captured in appendices of the document. An alternative is to capture the
modeling artifacts within a computer tool that can be configuration managed.

1.2.8 Map the appendices of the SDD to the paragraphing structure of the templates telling
in what appendix the corresponding work products will be captured.

1.2.9 Combine the functional department map (1.2.5), models map (1.2.3), and SDD
appendix map (1.2.7) on a single matrix for each template and make these matrices available for
program use.

1.2.10 EIT and the functional system engineering department must cooperate on selection of
one or more computer tools or paper and pencil algorithms with which to accomplish
requirements analysis on programs. Built a generic schema coordinated with preferred methods
and models.

1.3 Proposal Work That Prepares the Program for Initiation

Proposal team work is illustrated in Figure 3. Blocks that do not have numbers coordinating them
with the steps in this algorithm are not covered by the algorithm because they are not directly
related to requirements analysis and specification development but these blocks add valuable
context.

5

Figure 3 Proposal Team Work

1.3.1 When beginning the proposal or program work, the manager should establish a
program integration team (PIT) staffed by engineering, manufacturing, verification, logistics, and
quality and a program business team (PBT) staffed by finance, contracts, scheduling, business
information systems, and administration. Both of these teams should report to the program
manager. These two teams could be combined as a staff function to the proposal manager but
they will have integrating and optimization roles to play across the product oriented teams.

1.3.2 The PIT will perform an initial system analysis that will result in a clear
understanding of any requirements provided by the customer, formatting of those requirements
into alignment with the enterprise DID for a system specification, and adding to those
requirements the results of their own system analysis work. A system environmental
requirements analysis activity will expose a set of tailored standards covering the natural
environment corresponding with spaces within which the system shall have to operate. A threat
analysis will lead to exposure of hostile requirements. An interface analysis will identify external
and top level internal interfaces that will be characterized in requirements statements. The result
will be a preliminary system specification for submission with a proposal. If possible, this
analysis work will be continued to develop all of the immediately subordinate specifications each
of which will be the development responsibility of one of the top level integrated product and
process teams (IPPT) to be identified and staffed subsequent to contract award.

1.3.3 The modeling work described in paragraph 1.3.2 will yield modeling artifacts from
which requirements may be derived. The preliminary system specification development and any
other specifications developed during the proposal effort will follow the pattern described in the

6

next paragraph. The second tier specification development may be delayed until a contract award
but should precede the formation of the top tier IPPT. In all cases, requirements are derived from
a model.

1.3.4 Requirements flowing from the structured analysis work will flow into a requirements
analysis sheet (RAS) implemented in a computer database tool. All requirements entered into the
RAS must include a traceability reference to the model from which they were derived.

1.3.5 Out of the initial PIT system analysis work will also come the preferred product entity
breakdown diagram upon which the PIT, working in concert with integrated business team
personnel, will construct overlays for organization responsibility breakdown (IPPT assignments),
specification tree breakdown, engineering drawing breakdown, work breakdown (WBS), and
manufacturing breakdown The work breakdown will be handed off to the business team that will
use it as the basis for building the program work definition, cost estimate, and IPPT work
budgets. The IPPT will be assigned so as to align perfectly with the WBS making it possible to
present to each IPPT leader as the teams are formed, a copy of the top level specification for
which the team is responsible and the related budget and planning package for the whole WBS
the team is responsible for as well as their top level schedule responsibilities encouraging the
result that the IPPT leader may be held accountable for managing all aspects of the development
of the entity assigned to the team.

1.3.6 The PIT will select a set of templates that correspond with the kinds of specifications
that will have to be prepared on the program and the related DIDs that are coordinated with the
models that will be applied in the analytical work. The PIT must also map specialty engineering
disciplines to product entities to aid teams being formed to staff appropriately.

1.3.7 The PIT must take action to cause adequate computer tool seats to be allocated to the
proposal team and accomplish any planning necessary for the subsequent program relative to the
use of any requirements database tools and make any needed adjustments in database schema for
the program.

1.3.8 The PIT shall capture the results of structured analysis work performed during the
proposal activity in a preliminary system definition document (SDD) that will be used as the
basis for subsequent lower tier analyses.

1.3.9 Any specifications developed in the proposal effort must be formally reviewed and
approved by the proposal manager.

1.4 Work Subsequent to Contract Award

Specification related work to be accomplished subsequent to contract award is illustrated in
Figure 4. This work is repetitious in nature progressively working down through the expanding
architecture. Top-level teams may shred out during program work yielding sub-teams but in all
cases, the top-level teams are responsible as managers for all lower tier team activity. This
telescoping management responsibility is applicable throughout the team structures. During
program performance, lower tier requirements analysis responsibility may be passed down

7

through the team structure with immediately superior team reviewing and approving of all
immediately lower tier team specifications or the responsibility may be retained by the higher-
level team but these decisions must be coordinated with the team budgets and staffing
considerations arrived at during proposal work.

Figure 4 Program Work

1.5 The Preferred Templates

Ideally, the development organization would build a set of templates (paragraphing structure
with no content) and data item descriptions (DID) that tell how to build a specification following
the related template using a particular set of models. These should be maintained by the
functional department in system engineering that has overall requirements and specification
work responsibility. These should be available for reference or download by any new program.

Figure 5 offers a view of the preferred template for a system or hardware specification using
traditional structured analysis as the modeling choice. The template is annotated with the
preferred modeling artifact that will be used to identify the corresponding requirements and the
functional department from which the program will obtain personnel to accomplish the related
modeling work using the Figure 3 organizational structure. The data item description (DID)
acronym in the model column means that the content is driven by the content of the DID used as
the basis for the specification. The department references are cut at a very high level in this case
and should be identified at one or two layers below this level but Figure 3 goes no deeper. The
APP column gives the Appendix in the System Definition Document where the work products
can be found.

The structure in Figure 5 can also be used for computer software requirements specifications
(SRS) with paragraph 3.1 rewritten for UML and the model column updated to reflect UML
artifacts.

8

PARA TITLE MODEL DEPT APP
------------ --- ---------------------------- ------- ---------
1. SCOPE DID 2100
2. APPLICABLE DOCUMENTS DID 2100
3. REQUIREMENTS DID 2100
3.1 Functional and performance requirements DID 2100
3.1.1 Missions Mission Analysis 2100
3.1.2 Threat Threat Analysis 2100
3.1.3 Required states and modes DID 2100
3.1.3.1 Functional analysis DID 2100 A
3.1.3.2 Subordinate entities DID 2100 C
3.1.3.3 Interface relationships DID 2100 D
3.1.3.4 Specialty engineering requirements DID 2100 E
3.1.3.5 Environmental model DID 2100 B
3.2 Entity capability requirements Functional Analysis 2100 A
3.2.m Capability m Functional Analysis 2100 A
3.2.m.n Capability m, requirement n Functional Analysis 2100 A
3.3 Interface requirements N-Square Diagram 2100 D
3.3.1 External interface requirements N-Square Diagram 2100 D
3.3.1.m External interface m N-Square Diagram 2100 D
3.3.1.m.n External interface m, requirement n N-Square Diagram 2100 D
3.3.2 Internal interface requirements N-Square Diagram 2100 D
3.3.2.m Internal interface m N-Square Diagram 2100 D
3.3.2.m.n Internal Interface m, requirement n N-Square Diagram 2100 D
3.4 Specialty engineering requirements DID 2100 E
3.4.m Specialty Engineering Discipline m Specialty Scoping E
3.4.m.n Specialty Engineering Discipline m, Specialty Scoping E

Requirement n
3.5 Environmental conditions 3-Layered Env Model 2100 B
3.6 Precedence and criticality of requirements 2100
4. VERIFICATION DID 2100
5 PACKAGING DID
6. NOTES DID 2100
6.1 Requirements traceability DID 2100
6.1.1 Inter-specification specification traceability DID 2100
6.1.2 Verification traceability DID 2100
6.1.3 Modeling traceability DID 2100
6.1.4 Section 2 traceability DID 2100
6.1.5 Programmatic traceability DID 2100
6.2 Glossary DID 2100
6.3 Specification maturity tracking DID 2100
A. APPENDIX A DID 2100

Figure 5 System and Hardware Specification Template

A similar mapping should be provided for the software requirements specification (SRS) based
on, in the author's view, the use of UML. Customers often require conformance to a DID
supplied by them but may permit tailoring. The outline included in Figure 5 is a significantly
tailored version of MIL-STD-961E to group all requirements so as to correspond with the
modeling components contained in traditional structured analysis described in paragraph 2.2.1. k
of the standard. The author believes this format will work with software as well but a different
DID is required coordinated with the modeling approach selected (UML encouraged).

9

1.6 Modeling Work Product Capture Document

Programs should also be provided with a template for a System Definition Document (by
whatever name) within which they can easily capture the results of all modeling work so that it
can be preserved beyond the period of time when that work is actively being pursued. A later
section describes this document. The appendices of the SDD are referred to in Figure 5 in the
APP column and explained in Figure 20 and related text.

2 Structured Analysis

There are many models that can be used to accomplish an organized requirements identification
effort that is preferred to an ad hoc method because it will most often hit the target noted earlier -
identification of all of the essential characteristics and identification of no unessential
characteristics. This process description encourages the use of traditional structured analysis in
the near term to develop and identify the requirements for systems, hardware, facilities, real
property improvements, and personnel actions captured in procedures as discussed in paragraph
2.1. One of the most difficult tasks in system development revolves around the relations between
the system entities, the interfaces. This discussion of traditional structured analysis also contains
a complete algorithm for identifying all system relations. Where the product is going to be
implemented in computer software, unified modeling language (UML) is encouraged within a
process context offered in paragraph 2.2. It is intended that a development organization should
develop a process transformation roadmap needed to transition from this mixed method for the
modeling work to a universal modeling approach, still evolving, that can be applied to all
requirements work at the earliest possible. See paragraph 2.3 for a discussion of integrated
modeling.

2.1 Traditional Structured Analysis

Figure 6 illustrates an overview of the traditional structured analysis process (TSA). The eleven
numbered steps are briefly introduced followed by additional details in subordinate paragraphs.

1. Understand the User Requirements - Through conversation with the user and/or reading a
user requirements statement or specification, the developer tries to understand the user's
need. This is not ever easy because the user is able to explain only what their mission
interests are and the developer needs hard engineering data.

2. Decompose - Users commonly have problems that are too grand to be easily understood in a
single small document or simple diagram. These problems commonly have to be
decomposed or partitioned into a collection of smaller related problems.

3. Functional Flow Diagram - The TSA approach employs some form of functional analysis as
the decomposition medium.

4. Performance Requirements Analysis - The functions are translated into performance
requirements.

5. Requirements Analysis Sheet (RAS) - The strings of functions, performance requirements,
and product entities to which they are allocated appear as rows in the RAS. The RAS also is
used to capture all system requirements linked to the model from which they were derived.

10

6. Requirements Allocation - Performance requirements are allocated to product entities in the
RAS.

7. Product Entity Structure - The physical and logical entities that comprise the system are
arranged in a hierarchical structure that is used as the basis for WBS, specification
identification, team assignments, and many other program applications.

8. N-Square Diagram - The interfaces that must exist between the product entities are identified
through a pair-wise analysis of all possible interface relationships.

9. Environmental requirements for the expanding product entities are determined through
application of a three-layer model.

10. Specialty engineering requirements are identified by a group of specialist linked to the
product entity structure by a specialty engineering matrix.

11. This process is applied iteratively as lower tier entities are identified through functional
analysis.

Figure 6 Overview of the Traditional Structured Analysis Process

11

2.1.1 A System Defined

A man-made system is a collection of entities that are meant to interact in predictable ways with
an environment and with each other via relations between them to achieve a useful function
identified and articulated by a customer as a mission need statement. Therefore, systems are
composed of entities and relations between the entities. The system is intended to satisfy the
mission need statement, the system’s ultimate function, depicted on system diagrams as a
rectangular block titled System Need and identified with a functional identifier F. The need is
allocated to the system depicted on system entity model by a rectangular block named “system”
(or a particular system) and identified with a product entity identifier A.

A system interacts within an environment as shown in Figure 7. The environment for every
system is everything in the Universe (U) less the entities that are part of the system product
entity structure (Q = U - A). One can reduce the scope of the environment to those elements that
will have some influence on the system. The line joining the system and environment in Figure 7
(I2) indicates the relations between the two (external interfaces). The line joining the system on
both terminals (I1) indicates the internal relations between system entities (internal interfaces)
yet to be defined within the system.

Figure 7 Ultimate System Diagram

2.1.2 The System Environment

The environment for any system is composed of the subsets illustrated in Figure 8. While all
environmental effects on the system are relations, they may be partitioned between those that are
commonly considered environmental stresses and the cooperative environmental elements that
are treated as external interfaces commonly developed by a pair of teams or contractors
responsible for the terminal product entities.

A context diagram, such as that shown in Figure 9, even though similar in nature to Figure 7,
offers a useful simple model for focusing attention on identifying all external relations. Some of
these terminators will be natural, non-cooperative, or induced environmental stresses. Others
include hostile stresses determined through a system threat analysis as well as both stresses and
useful relations with cooperative systems. Though this diagram was conceived as the beginning
of the modern structured analysis model, it has a useful purpose in TSA as a means of viewing
all of the inside-outside relationships and in UML as an organizer of use cases. It can be used to
make a first impression in the line I2 in Figure 7.

ENVIRONMENT SYSTEM
I2

I1

AQ

12

Figure 8 System Environment

Figure 9 System Context Diagram

The system natural environment is determined by defining all of the spaces within which the
system will be employed based on an analysis of the intended mission and basing concept. The
spaces are coordinated with a set of environmental standards. Each standard is studied for
necessary content and the remainder tailored out. Each selected parameter is then studied for an
appropriate range. The system natural environment is then the union of the selected parameters
from the selected standards.

The non-cooperative environment is defined by determining what stresses will be applied to the
system from man made systems which are neither hostile nor cooperative. An example of non-
cooperative stress is electromagnetic energy. Self-induced environmental stresses are not easily

13

determined at the system level because one needs to understand energy sources and other
stressors within the system determined as part of the design of end items.

System cooperative environmental relations are defined by determining how the system to be
developed will associate with other friendly systems already in existence or being developed.
These associations may be coupled into or out of the system in terms of information, physical
association, materials, or energy.

2.1.3 System Functionality

A function is a necessary activity for a system to perform. It may be static, dynamic, or both. It
should be named using an action verb followed by a noun. A function is depicted in modeling the
system as a rectangular block identified by an action verb name centered in the box and a
function identifier (ID) in the lower right corner. The ultimate function for any system is the
customer need the name of which is the need statement possibly paraphrased to fit into the space
provided coupled with a function identifier F.

Two or more functions can be linked together using directed line segments to show a sequence of
functions. In Figure 10 the understanding is that function F1 must be accomplished before
function F2. Combinatorial symbols may be added to permit more complex sequential
relationships. The combinatorial symbols encouraged are AND, inclusive OR (IOR), and
exclusive OR (XOR) with the common logical meanings. Enhanced functional flow block
diagramming adds loop (repeat a function until a specific outcome has been attained) and iterate
(repeat a function a specific number of times) combinatorial symbols that can be useful.
Diagrams so constructed are called functional flow diagrams. These diagrams may be oriented
on the page with their primary flow axis arranged horizontally or vertically with the flow in
either direction.

Figure 10 Function Sequence

For any function with identifier F@ (where @ is a string of length n (including n=0) composed
of characters from the set {A through Z less O)U(a through z less l)U(0 through 9)}) there may
exist one or more subordinate functions F@# (where # is a single character from the same set
identified above which differentiates other functions at that level from one another). This is
illustrated in Figure 11. Every function need not have an expansion. There is no need to assign
function identifiers in alpha numeric sequence on a page of the diagram but it helps the human to
use the diagram if they are assigned initially coordinated as much as possible with the function
sequence. If a function is deleted subsequent to a release of the diagram, that identifier should
not be used again. If the number of functions on any one diagram exceeds the maximum number
of symbols available, 60, change the diagram to reduce the number to less than 60.

14

Figure 11 Function Decomposition

Ideally, who ever accomplishes the initial analysis of the need, would do so using the functional
analysis process described here where the first decomposition is the system life cycle as shown
in Figure 12 and the second is an expansion of the life cycle function “Use System” (F47) to
expose the top level operational intent and initial content of the user requirements documentation
or preliminary system specification. If the customer or other initial analysis agent applies an
unstructured or ad hoc approach, then the development organization may have to accomplish a
functional analysis and try to map the requirements identified by the customer (user and
acquisition agent) to the functionality exposed when they do accomplish this work.

Figure 12 System Life Cycle

DEFINE
GRAND
SYSTEM

DESIGN
GRAND
SYSTEM

MANUFACTURE
GRAND
SYSTEM

VERIFY
GRAND
SYSTEM

SUSTAIN
SYSTEM

USE
SYSTEM

F41

CUSTOMER
NEEDS

ACQUIRE NEW BUSINESS

PROVIDE PROGRAM RESOURCES

MANAGE ENTERPRISE

PROGRAM LIFE CYCLE

F43

MATERIAL
OPERATIONS

PROGRAM
GO AHEAD

LESSONS
LEARNED

PROGRAM
RESOURCES

ASSURE
PRODUCT AND

PROCESS
QUALITY

MANAGE
PROGRAM

F42 F49

F48F47

F44F45

F46

SYSTEM
RESIDUAL

F4

F1

F3

F2

MATERIAL

2

2

2 58

2

25

57

7

8

CUSTOMER
NEED

F

ENTERPRISE
VISION

F

F

60

X

X: REFER TO PROGRAM SYSTEM DEFINITION DOCUMENT FOR EXPANSION

15

Ideally, the development organization would extend the functional analysis into the remainder of
the system life cycle functions as well as the Use System function determining appropriate
resources for the process steps of the development program and the product system being
developed such that the physical product delivered will be jointly optimized relative to its
product and process. Commonly, process functions do, or should, influence product functions
and the corresponding product entities needed as well as the opposite case.

2.1.4 Performance Requirements Derivation and Allocation

The functions identified in the functional flow diagram must be translated into performance
requirements that tell what the system and its parts must do and how well it must do them as
shown in Figure 13. These statements can be first developed as primitive statements for example
phrased as “Velocity > 600 knots” without complete sentence structures and subsequently
transformed into complete sentences in the chosen language. Traditionally, a requirements
analysis sheet (RAS) has been used to capture the function identification, the primitive
performance requirements statements, and the allocation of these performance requirements to
product entities. One could allocate the function names directly to architecture but often one
finds a one-to-many allocation result this way whereas allocation of performance requirements
tends to follow a one-to-one pattern. To fully characterize a function it may require identification
of multiple performance requirements and these several performance requirements may be
allocated to different product entities.

The RAS as traditionally used is incomplete, unfortunately, and this discussion will use a RAS
complete. We will show how the three kinds of constraints can also be captured in the context of
Figure 13 shortly. The intent is to be able to capture all requirements in a RAS linked to a
modeling artifact implemented in a computer application.

Figure 13 Traditional Requirements Analysis Sheet

2.1.5 Product Entity Structure

System functionality is accomplished by physical entities that form part of the physical system.
These entities in the system, in the aggregate, comprise the product entity structure that the
author formerly referred to as the system architecture. The word architecture has taken on a
significantly broader meaning in recent years convincing the author that what he formally
referred to as architecture should now be referred to by the more isolating term product entity

16

structure. The function F is accomplished by product entity structure element A, the system, by
definition as shown in Figure 7. Lower tier entities should be exposed following Sullivan’s
encouragement of form follows function. Trade studies may be appropriate to make hard
decisions on the best implementation of a particular function in early program phases. The
physical entities that accomplish functionality can be partitioned into five classes: (1) hardware,
(2) computer software, (3) facilities and improvements to real property, (4) procedural definition,
and (5) humans following procedures or acting autonomously. We could merge the last two into
one. The relationship between functions, the physical entities in the product entity structure, and
the corresponding performance requirements is depicted on a simple requirements analysis sheet
as shown in Figure 13.

The aggregate product entity structure for a system is illustrated in a hierarchical model
connecting the product entities arranged into a breakdown block diagram as illustrated in Figure
14. The entity identifiers follow the same pattern as the function identifiers explained earlier
beginning with a letter A because of the author's previous use of the word architecture for this
view. The entities stream out of the RAS available for structuring into the product entity block
diagram. Ideally, this work would be accomplished by a team of people representing hardware
and software engineering, manufacturing, procurement, and verification with strong
system/program leadership by the PIT. Initial functional analysis and allocation must concentrate
on understanding user mission needs. This will generally require intense interaction with the
user, ideally using system models to encourage mutual understanding. Alternative ways of
implementing functionality with different product entities should be considered and where the
decision is very difficult they should be subjected to a trade study.

Figure 14 Product Entity Structure

17

2.1.6 Allocation Pacing Alternatives

The conduct of the functional analysis and allocation work can be paced in one of four different
ways:

(1) Instant – As soon as functions and/or their corresponding performance requirements are
identified, they must be immediately allocated to the expanding product entity structure.

(2) Terminal - All of the functional analysis must be complete before any functions and/or
their corresponding performance requirements can be allocated to product entities.

(3) Layered - The analyst completes one layer of the expansion of a functions and must
allocate all of the exposed functionality and/or the corresponding performance
requirements to product entities before further expanding that function. This works best if
all product entities related to a layer are defined in terms of their requirements and design
concept before pursuing the next functional layer and its allocation but there generally is
not sufficient time available and one must accomplish a lot of this work in parallel leading
to some risk and interaction. The layered approach has been popularized by Mr. Bernard
Morais and the late Dr. Brian Mar under the title FRAT.

(4) Progressive – The analyst completes several layers of the functional analysis without
allocating any of it to product entities. At a layer guided by experience the analyst begins
allocating performance requirements derived from higher tier functionality to product
entities. Design concepts are defined for the product entities at the higher levels and these
act to both guide and constrain lower tier functionality progressively. Allocation is delayed
throughout the analysis such that higher tier design concepts help to steer lower tier
functional analysis tending to isolate iteration to one structure (functionality, architecture,
or allocation) at a time. The two extreme cases (1 and 2) are flawed due to a need to iterate
F, A, and allocations excessively in the case of 1 and a common need to significantly
change lower tier functionality after the higher tier allocations begin in the case of 2. The
progressive approaches either by layer or guided by experience will generally produce
better results with less modeling hysteresis.

There exists a downward limit in decomposition or expansion of the functional portrayal. This
limit for any one branch in the expansion is best determined on the product entity plane based on
the analyst’s understanding of the problems related to the lowest tier product entities. Where all
of the lowest tier entities are fully characterized supporting procurement or in-house design, the
functional analysis work can be reduced to maintenance of the models and related data. There is
one more layer of requirements related to parts, materials, and processes but that is driven by
design decisions during synthesis and commonly has already been completed by those
responsible for the sources of these entities. The logistics analysis process may require a switch
to a process diagram and if the progressive allocation approach described has been followed the
functional flow will have been migrated toward a process diagram at the lower tiers.

18

Figure 15 illustrates a geometric view of the process of deriving performance requirements from
functions and the allocation of those performance requirements to product entities. For example,
a performance requirement has been derived from F4713 and allocated to product entity A11.
This plane represents the normal RAS used only for function allocations. As suggested by the
other structures we will use the geometric structure to expand the RAS to cover all requirements.

Figure 15 Juxtaposition of RAS and N-square Diagrams

2.1.7 System Relations

As the product entity structure is formed, the analyst can begin to identify the needed internal
relations between the system entities by using an n-square diagram where the product entities are
identified down the diagonal at some level of indenture. For a given analysis where the number
of entities being studied for interface relations in an n-square diagram is N the largest possible
number of relations is N(N-1) counting each direction as one possibility between each pair of
entities. Interfaces between these entities is pre-determined by the way that functionality is
allocated to the entities. Therefore, one may explore the list of function-product entity pairs

19

associated with each product entity in the n-square diagram. This is referred to as a pair-wise
analysis of the n-square diagram intersections.

Figure 15 includes an n-square diagram with only half of the square showing (the remainder
hiding behind the other structures in the diagram). The diagonal (containing the product entities
we are interested in accomplishing the pair-wise analysis on) has been aligned with the product
entity axis of the function-product entity matrix (which corresponds to the simple RAS of Figure
13).

The process for marking the intersections of the function driven relations matrix (n-square plane)
entails a pair-wise analysis of the function-product entity pairing relationships marked on this
matrix. Interface Ix is encouraged by the conclusion that if F4711 maps to A13 and F4712 maps
to A11 then there is a possible demand for an interface between A11 and A13 to implement that
relationship. So we map functions to product entities but we map F-A pairs to interfaces and
those interfaces are pre-determined by the way we allocate functions to the product entities.

If the system is a modern war ship or the system that will take man to Mars, a pair-wise analysis
of the function driven relations matrix would be beyond human comprehension if attempted all at
one time, We can, however, partition the analysis work to one interface expansion at a time and
it is not so overwhelming. At any one level of product entity granularity, we can explore one
layer of product entity structure expansion for internal interfaces within the parent item. If there
are five subordinate entities then the number of possible interfaces to be examined in a pair-wise
fashion would be 5x4 or 20. Similarly, external interfaces can be analyzed individually. Of
course, it will still be necessary to accomplish considerable interface integration work because of
the partitioned process. This process will go very fast if the analyst is very familiar with the
problem space and the evolving solution concepts. The complete algorithm is extended in
subsequent paragraphs.

The requirements analysis sheet (RAS) identifies every possible pairing of functions and
architecture entities. We may sort this listing so that all of the functions (or performance
requirements derived from those functions) allocated to each entity are grouped by entity. Then
we can pile up the allocations onto the product entity squares on the diagonal of a physical n-
square diagram as suggested in Figure 15.

The discussion so far has dealt only with internal interface identification all defined on the
function driven relations matrix of Figure 15. To cover external interfaces we add the larger n-
square diagram on Figure 15. The diagonal in this case includes all of the product entities plus all
of the external entities in the cooperative environment. We can identify relations between these
external and internal entities in the same way we did the internal ones. The association of
function F4712 to cooperative environment entity QC1 and allocation of a function to A12 may
define a need for an interface I2y.

20

2.1.8 Environmental Relations Algorithm

2.1.8.1 System Environmental Relations

The system environment consists of all entities in the Universe less those that are in the system.
That is, Q=(U-A) where Q is the environment, U is the Universe, and A is the product entity
structure of the system being developed. It is convenient to partition all system level
environmental relations into the sets illustrated in Figure 8. The system cooperative environment
(QC) can actually be treated as an external interface and can be developed using the algorithm
covered in Paragraph 2.1.7 very effectively. External cooperative systems are simply located on
an extension of the product entity axis forming the cooperative environment axis. The hostile
environment (QH) can best be understood through analysis of threats posed by hostile forces.
The non-cooperative environment will yield to the same thought process applied in the threat
analysis except that the stresses applied to the system are not applied for hostile purposes, rather
simply because the system being developed is sharing a common operating space with other
systems. Electromagnetic interference is an example of the stresses applied in this set.

System time (QN2) is studied using time lines oriented about the functions that the system must
satisfy. When we allocate those function (or their corresponding performance requirements) to
architectural entities the timing requirements corresponding to the functions are applied to the
entity as timing requirements.

System space (QN1) is defined through mission analysis such that it is determined in what
volumetric spaces of the Earth (surface, subsurface, and aerodynamic) and/or surrounding space
and/or distant bodies the system shall function within, on, or around. For each space, that space
is teamed up with one or more natural environmental standards that define that space. Each of
these standards is then studied to determine which natural environmental (QN3) parameters
included in the standard shall apply to the system being developed. Those that do not apply are
tailored out of the standard. The selected parameters are then studied to ensure that the range of
values is appropriate for the system. If the range in the standard is too broad it is tailored to
narrow the range of values to that for which the system shall be designed. This process is
repeated for each standard linked to a system operating space.

Figure 15 also extends the RAS concept to include environmental requirements analysis. The
system environment as depicted in Figure 7 is illustrated at the diagram “origin” on the
environmental axis that happens to coincide with the architecture “origin” that corresponds to the
whole physical system A.

2.1.8.2 End Item Service Use Profile

An end item is a major element of a system that generally retains its physical configuration
throughout its mission performance and has an end use function. The end items may remain
fixed in place during use or move over great distances and maneuver within the system spaces as
a function of the system mission and the end item’s application in the system. Each end item
should be designed to endure only those natural environmental stresses anticipated so it is
necessary to determine what subset of the system natural environment each end item shall be

21

exposed to. To accomplish this, one must create a physical process flow diagram. This is not the
same as the functional flow diagram used to identify system architecture and performance
requirements. The blocks on a functional flow diagram represent things that have to happen
whereas the block of a process diagram represent a real world analogy. You cannot profitably
consider system entities flowing through the functional flow diagram, indeed we are using the
diagram to determine what those entities should be. However, we can imagine the system
product entities flowing in the process diagram where each process acts as a transformation on
the system entities.

The first step in defining end item environmental relations is to map the system environmental
parameters to the process steps at some level of indenture, generally at a level where the
environmental map does not change significantly below that process level. This work defines an
environment for each process. The next step is to map the architectural entities to the process
blocks. If an entity only maps to a single process step, it simply inherits the process
environmental set. If, as is so often the case, the architectural entity maps to two or more process
blocks, then it will be necessary to apply some kind of integrating process to any differences in
environmental stresses and their values observed between the two or more process blocks. The
rule most often selected initially is to pick the worst-case range for each parameter across the
process values being evaluated. If this rule does not adversely influence system cost, then it is an
adequate solution. If this approach either results in an adversely narrowed system solution space,
then an alternative to “worst case” must be derived. Often time lines will show that the problem
environmental stress will be applied over such a short time as to be insignificant. In other cases,
one may find that the problem can be narrowed to some particular combinations of values that
are very unlikely to occur. If the problem is intractable, it may be necessary to restrict one or
more system environmental parameters more severely than is currently being done. Generally,
this will have an adverse effect on system performance.

The self induced environment (QI) can best be studied and defined at the end item level since it
is end items which contain the sources of energy and other stresses of interest which will reflect
commonly through a natural environmental parameter right back into the system. Since the self-
induced stresses are commonly greater in magnitude than the corresponding natural stresses for
that same parameter, these induced relation values have the effect of extending the range defined
through the application of the end item service use profile algorithm discussed above.

2.1.8.3 Component Environmental Relations

The environmental relations appropriate for components installed within end items are simply
the end item environmental stresses if the end item has no altering effect on those stresses and all
spaces within the end item offer the same environmental stresses to components installed within
them. Where an end item does have a modifying effect on end item stresses but all spaces within
and upon the end item offer the same stresses, it is necessary to determine the end item design
effect on end item environmental stresses and the result is the set of installed component
environmental stresses. The most complex case occurs when the end item must be partitioned
into two or more spaces more often called zones of common environmental stresses. The value
of each end item parameter must be determined for each zone thus defining the environment for
each zone. Then one maps the components to the zones and they inherit the zone environments.

22

Commonly, the job is not complete at this point because it is found that there is no zone within
which one or more components can be installed in a particular end item that will cause their
environmental stress limits to be satisfied. When this happens, it is necessary to either change the
component environmental specification values or include an environmental control system as an
added entity into which the components with the environmental range shortfall problem are
placed.

2.1.8.4 Environmental Impact

The environmental effects discussed in the three previous cases deal with environmental stresses
the environment will apply to the system but there may be cases of the opposite direction that
will cause damage to the environment. Once identified by someone skilled in environmental
impact, these can be treated like safety hazards to be mitigated through re-design, procedural
controls, or compensating environmental actions. In the case of military systems it is very
difficult to mitigate the damaging effects of warfare but these systems can also have damaging
effects on the environment in peaceful use such as training and maintenance. Often these
materials are just naturally dangerous to be around as illustrated in the difficulties observed in
the base closure efforts where many adverse environmental effects have had to be identified and
mitigated.

2.1.9 Specialty Engineering and RAS Complete

The system engineering agent for the system must build a list of all of the specialty engineering
disciplines that will be applied in the development of the system. A specialty engineering
scoping matrix should be prepared between specialty engineering disciplines that may be
required in development of the system and the product entities. This will help to determine team
staffing needs in that area and connect people in those disciplines with a need to do specialty
engineering requirements analysis for the indicated items. Figure 16 adds one more plane, the
specialty engineering scoping matrix, to the construct previously illustrated in Figure 15
providing for allocation of specialty engineering disciplines listed to architecture.

Specialty discipline H7 is shown mapped to architecture item A11. This must be followed by
analyst definition of one or more discipline H7 requirements that will flow into the specification
corresponding to the product entity. The structure exposed in Figure 16 is a complete RAS
showing all of the important requirements related relationships supporting the requirements
analysis process leading to the identification of every kind of requirement appropriate to the
system and hardware specifications and all of them linked to and derived from a model.

23

Figure 16 A Geometric View of the RAS Complete

The fact that an aircraft airframe will have to be checked for alignment during manufacture and
after hard use (hard landing or pulling excessive g’s in flight, for example) identifies a need for a
relation between the airframe and the equipment which will be used to accomplish the alignment.
Today this will generally call for some form of laser optical application so the airframe would
have to either include targets, detectors, or mirrors or provisions for these to be applied. The
manufacturing and maintenance engineers would have to consider all of the ways there may have
to be relations between support equipment and the operational entity. There may be other cases
where these disciplines have to call for internal relations within the system entities. For example,
if the system must include built in test (BIT), there will have to be relations between most of the
on board equipment and some entity that concentrates the BIT effects for display to operations
and/or maintenance personnel.

24

The needs of operations personnel, such as aircraft pilots, locomotive engineers, ship captains,
and automobile drivers provide a tremendously rich class of entity relation possibilities. The
physical relations are always fairly simple in that the human operator has only his/her senses,
mental acuity, and physical strength through which to interact with the system. This problem is
made much more complex, however, because not all humans will react in precisely the same way
to a particular stimulus. It will be necessary to determine the complete data set that the human
will require under all operating conditions and in what way the human shall influence system
behavior in terms of controls. Operator sequence diagrams, built like a UML activity diagram
with swim lanes, can be useful in doing this work.

Every one of the specialty engineering disciplines selected for the program must be evaluated for
entity relation driving potential and those persons doing that work alerted to their responsibilities
in identifying relations for further consideration by the whole team.

2.1.10 RAS-Complete in Table Form

The results from the analyses noted in prior text must be captured on its way into program
specifications. Certainly, the most advantageous way to do that is in a computer database
systems such as DOORS, CORE, or SLATE. Therefore we would expect that some form of
tabular structure would suffice. Figure 17 is offered as the candidate view of this table for use
during development in capturing the relationship between model, requirements, product, and
document entities. The model ID (MID identifies the model from which the requirement was
derived. The requirement columns identify the requirement ID (RID) assigned by the computer
system for use in traceability. The RID is a made-up computer-assigned unique field using a base
60 numbering system in this example but a hexa-decimal implementation is probably more
common. Ideally the requirement statement should be captured in primitive form (attribute,
relation, value, and units) wherever possible with different fields for each component of the
string. The primitive form is shown concatenated in Figure 17. The final column pair offers
specification paragraph number and title.

The sample data included is ordered by model ID alphanumerically separating the data into the
four kinds of requirements found in a system or hardware specification. The lists the MIDs
respected by the author is still in a state of change as different RAS-Complete possibilities are
explored. This may explain the apparent unthinking selection of H and Q for specialty engineer-
ing and environmental requirements, respectively. The intent is to identify all possible modeling
artifacts with a letter as a source from which every conceivable requirement may be derived.
Model letters for UML artifacts have been included in the set and will be introduced later.

This view provides clear traceability between the models from which the requirements were
derived and the product entities to which they were allocated for all of the requirements, not just
the performance requirements. What the author calls lateral traceability is captured in the
database implementing the RAS-Complete. It is also a simple matter to link the rows in the
matrix in a database to the corresponding verification requirements as well as the tasks to which
they are allocated and their corresponding plans, procedures, and reports. Vertical traceability is,
of course, simply a matter of relating the unique RIDs from pairs of requirements in specification
parent-child relationships identified by their PID.

25

Figure 17 RAS-Complete in Tabular Form

2.1.11 Traditional Structured Analysis Summary

In summary, a system is defined by identifying its functionality starting with the need (F),
allocating that functionality to entities that become part of the system architecture (A). These
entities that form the system architecture are selected by determining the performance
requirements that the system must satisfy to meet the top-level customer’s need. The pairs of
functions and product entity allocations pre-determine how the entities will have to relate to each
other through interfaces (I) between the product entities. The environmental elements (E) are
defined at the system level in terms of the spaces within which the system must function and the
corresponding characteristics of those spaces drawn from appropriate environmental standards
covering those spaces. As depicted in Figure 18, the traditional structured analysis effort
attempts to define the most cost effective solution such that in N cycles of the process axis of the
physical system (generally cyclical in the interest of reuse of system elements) the relation P
(process) maps the cross product of the power sets of architecture (A*), interface (I*), and
environment (Q*) to the function set F such that F is covered.

MODEL ENTITY !REQUIREMENT ENTITY !PRODUCT ENTITY !DOCUMENT ENTITY
MID !MODEL ENTITY NAME !RID !REQUIREMENT !PID !ITEM NAME !PARA !TITLE
--------- !-- !---------- !-- !--------- !--------------------------------- !------------ !------------------------------
F47 !Use System ! ! !A !Product System !
F471 !Deployment Ship Operations ! ! !A !Product System
F4711 !Store Array Operationally !XR67 !Storage Volume < 10 ISO Vans !A1 !Sensor Subsystem !

H !Specialty Engineering Disciplines ! ! !A !Product System
H11 !Reliability !EW34 !Failure Rate < 10 x 10-6 !A1 !Sensor Subsystem !3.1.5 !Reliability
H11 !Reliability !RG31 !Failure Rate < 3 x 10-6 !A11 !Cable !3.1.5 !Reliability
H11 !Reliability !FYH4 !Failure Rate < 5 x 10-6 !A12 !Sensor Element !3.1.5 !Reliability
H11 !Reliability !G8R4 !Failure Rate < 2 x 10-6 !A13 !Pressure Vessel !3.1.5 !Reliability
H12 !Maintainability !6GHU Mean Time to Repair < 0.2 Hours !A1 !Sensor Subsystem !3.1.6 !Maintainability
H12 !Maintainability !U9R4 !Mean Time to Repair < 0.4 Hours !A11 !Cable !3.1.6 !Maintainability
H12 !Maintainability !J897 !Mean Time to Repair < 0.2 Hours !A12 !Sensor Element !3.1.6 !Maintainability
H12 !Maintainability !9D7H !Mean Time to Repair < 0.1 Hours !A13 !Pressure Vessel !3.1.6 !Maintainability

I !System Interface ! ! !A !Product System
I1 !Internal Interface ! ! !A !Product System
I11 !Sensor Subsystem Innerface ! ! !A1 !
I181 !Aggregate Signal Feed Source !E37H !Aggregate Signal Feed Source !A1 !Sensor Subsystem !

!Impedance ! !Impedance= 52 ohms + 2 ohms
I181 !Aggregate Signal Feed Load !E37I !Aggregate Signal Feed Load !A4 !Analysis and Reporting !

!Impedance ! !Impedance= 52 ohms + 2 ohms ! !Subsystem !
I2 !System External Interface ! ! !A !Product System

Q !System Environment ! ! !A !Product System
QH !Hostile Environment ! ! !A !Product System !
QI !Self-Induced Environmental ! ! !A !Product System

!Stresses
QN !Natural Environment ! ! !A !Product System
QN1 !Temperature !6D74 !-40 degrees F< Temperature !A !Product System !

! ! !< +140 degrees F
QX !Non-Cooperative Environmental ! ! !A !Product System

!Stresses

26

Figure 18 The System Relationship

For every process Pi, there exists a combination of architecture, interface relations, and
environmental stresses such that some subset of the function set is covered or accomplished. The
power sets of these entities include all of the possible subsets of these entities within their own
set thus the power set of A includes every useful combination of product entities relative to every
process step. Useless subsets are also included in the power set as well, of course. It is important
that the functions be covered in the correct order determined by the sequence of the processes
linked together in the process axis. If all of the functions are satisfied in N revolutions of the
process axis as planned, then we may say that the system is consistent relative to the use of its
product entities, interfaces, and environmental stresses. If there are product entities that are not
used in the process or some that are needed but not available we may not have the optimum
product entity structure.

This whole process happens in practice somewhat backwards in that for an unprecedented
system, one begins the development process only knowing the ultimate function, the need, and
must expand everything from that one perspective.

2.1.12 SDD Content and Format

When used to support the application of traditional structured analysis on a program, the
preferred SDD format consists of a main body and seven appendices, each providing a capture
point for the work products of one of the several fundamental analytical system requirements
analysis process areas. Figure 19 shows how the document is structured. A series of seven
interactive system analysis activities feed the development of the appended data explained in
subordinate paragraphs. The appended data then becomes the basis for lower tier analysis that
produces content for the lower tier specifications and adds to the appended data.

27

Figure 19 SDD Structure

2.1.12.1 Document Main Body

The main body simply contains a table of contents, list of illustrations, and list of tables for the
document plus it should provide text explaining the capture of work products in the seven work
areas during system and lower tier analyses. The body should also explain that the SDD couples
the structured analysis work and its work products to specification content as guided by the
selected specification standard templates.

2.1.12.2 Appendix A, Functional Analysis

This appendix captures the functional flow diagram starting with the identification of the system
need and the life cycle flow diagram. The Use System Function is initially decomposed
progressively to expose more details about the user need. For each block in the functional flow
diagram, there should be one line in the function dictionary also contained in Appendix A.

2.1.12.3 Appendix B, System Environment Analysis

The environment consists of several subsets of stresses that are applied to the system. This
appendix identifies and characterizes them. Timelines capture critical timing requirements. The
spaces within which elements of the system must function are identified and the corresponding
environmental stresses defined in terms of standards that describe those spaces. Service use
profile analysis is applied to uncover end item environmental requirements. Finally, zoning of
end items exposes component environmental requirements.

28

2.1.12.4 Appendix C, System Product Entity Analysis

The system product entities result from the allocation of functionality to things. As these pairs
are defined on the function-product entity matrix, they must be entered into the product entity
structure diagram, This work should be accomplished by a team of people knowledgeable in
system, hardware, and software engineering, manufacturing engineering, verification
engineering, logistics, material and procurement, and logistics in order to evolve an optimum
product entity structure which will be universally respected on the program. This product entity
structure is also the basis for the specification tree. Each item on the tree must have a responsible
agent identified, a template selected, and a release date established. This structure should also be
the basis for any IPPT established on the program. It is also the basis for the WBS so the SOW
and IMP align perfectly with the teaming structure applied on the program.

2.1.12.5 Appendix D, System Interface Analysis

Interfaces are identified by pair-wise evaluation of function allocations to product entities using
an n-square diagram. This appendix identifies all interface needs internal to the system as well as
externally to the cooperative systems identified in Appendix B.

2.1.12.6 Appendix E, Specialty Engineering Definition Analysis

Appendix E provides a space in which system engineers can capture their work directed at
identifying the specialty engineering disciplines that will have to accomplish work on the various
entities in the system product entity structure to define the appropriate requirements and
subsequently the needed analyses to confirm that those requirements are being satisfied. A
specialty engineering scoping matrix is used to report the results of that analysis.

2.1.12.7 Appendix F, System Process Analysis

Appendix F captures the results of a physical process analysis in the form of a process flow
diagram. This is used by logistics engineers to drive out requirements related to training, support
equipment, maintenance procedures (tech data content), and spares consumption. It is also
needed to complete the environmental use profile study reported upon in Appendix B that drives
environmental requirements for end items.

2.1.12.8 Appendix G, Requirements Analysis Sheet

The exposed functions are listed in the Requirements Analysis Sheet (RAS) contained in this
appendix. Related performance requirements are defined and allocated to a product entity. These
performance requirements have to have a paragraph number assigned, title identified, and they
can be outputted into a specification following a particular template. That part of the work can be
done inside a requirements database system. Ideally, all of this work would take place within a
requirements database tool but some organizations may find it preferable for their purposes to do
the traditional structured analysis work using pencil and paper followed by capture of the
resulting requirements in a word processor or a computer database tool from which
specifications can be generated.

29

In keeping with the Integrated RAS idea advanced in Paragraph 2.1.10, the RAS is not restricted
to performance requirements. Specialty engineering, interface, and environmental requirements
can also be included so that every requirement appearing in every specification on a program
will transition from the analytical model from which it was derived into a specification via the
requirements analysis sheet.

2.1.13 Team Activity During Requirements Work

The PIT is responsible for accomplishing all requirements analysis work focused on developing
the system specification and the immediately subordinate specifications that will be the top-level
specifications for the top level IPPT. In general, this analysis work will be accomplished using
traditional structured analysis following the pattern described in this section. PIT initiates the
analysis capturing the work products in the SDD thus initiating that document. Requirements
derived from the modeling work are entered into the database application initiating the
requirements capture. Any customer requirements documentation is also entered into the
database and traceability established between these requirements and those developed from
modeling efforts that appear in the system specification. Traceability is continued down to the
subordinate specifications to be handed over to the top-level teams when formed.

The PIT identifies all system external interfaces and defines them in the system specification or
the beginning of an interface control document. Internal interfaces are also identified and defined
for the first tier entities below the system level and the next lower tier in order to complete the
internal interface definition for the first tier. All requirements are entered into the requirements
database application and traceability entered.

The PIT develops a specialty engineering scoping matrix and maps the needed disciplines to the
product entities identified and coordinates the indicated domain experts to derive requirements
for the system and top-level end item specifications. The system level environmental
requirements are derived from system spaces identified and mapped to corresponding tailored
standards.

With the top-level specifications completed, the PIT can bring the top-level IPPT aboard. As
those teams assemble and become familiar with their specification and the program planning
data prepared by the proposal team, they continue the requirements analysis process relative to
the functionality of their product entity. The primary role of the PIT switches to integration and
optimization across the IPPT. The teams enter requirements data into the requirements database
and maintain traceability. As this process continues, it may become apparent that lower tier
teams are required in which case the parent team takes over system responsibilities for them. The
parent team in all cases must develop the top-level specification for any new team. Also, at some
point, a team will identify an allocation of functionality to computer software and the continued
analysis of that entity should switch to UML.

30

2.2 UML

2.2.1 Entry Analysis and Overview

While it is encouraged that the enterprise apply TSA today as the entry modeling technique, it is
entirely possible to initially enter the problem space analysis for a system that will be
implemented primarily in software with UML rather than TSA or SysML. The suggested process
starts at the top with the problem expressed in the system need and illustrated in a context
diagram, borrowed from modern structured analysis, like that shown in Figure 20. The context
diagram expresses relationships between the system, represented by the bubble, and terminators,
representing outside entities deriving benefits from the system and supplying things needed by
the system to function, generally information in a computer software system but more general in
a system that will be implemented using a collection of technologies. Figure 20 is an alternative
to the traditional depiction of the general system as a block labeled System interacting with a
block named Environment.

Figure 20 Context Diagram

While UML could be the entry modeling approach at the system level following the approach
discussed in this section, the discussion to follow is based on the assumption that the problem
space will be entered using TSA with a recognition at some point of a need to switch to UML as
entities are identified that must be developed in software. Figure 21 illustrates a process for
applying UML starting at whatever level in the system the program chooses to start applying it.
Generally, this will be some level below the system level based on allocation of higher tier
functionality to a software entity.

In a given system, the initial analysis may have identified one or more entities that will be
implemented in computer software so for each of these separate entities one should build a
context diagram. It should be noted that the context diagram was popularized in modern
structured analysis and was not adopted by UML but it is a useful artifact with which to identify
the inside-outside relationship between the software entity and the entities external to that
software with which it must interact. The context diagram is offered as an intermediary view that
will lend some discipline and order to the identification of use cases. We will identify one or
more use cases for each terminator and perform a dynamic analysis on each of those use cases.

31

Figure 21 Unified Modeling Language Overview

For each terminator in Figure 20, identify one or more use cases through which the intended
functionality will be accomplished identifying the actors deriving benefits from the system to be
created. One use case may expand into several extended or included use cases to cover a more
complex situation. You will note that the opening gambit has been arranged to provide structure
in the identification of needed use cases. Next, for each use case, build one or more scenarios
dealing with how that use case interacts with the system. These scenarios can be in text form, a
list of events, or some kind of diagrammatic treatment.

Then, express each scenario in the form of an activity and/or sequence diagram cast at the UML
entry level initially. The activity diagram can be thought of a functional flow diagram similar to
that used by software programmers many years ago or by system engineer in traditional
structured analysis. It may be drawn vertically or horizontally as far as the author is concerned.
Swim lanes may be overlaid upon the activity diagram each of which corresponds with the lower
tier entities (classifiers in UML) that will be responsible for implementing activities within their
swim lane. This is a key point in the analysis where the analyst must make lower tier product
entity structure decisions that should lead to adding software entities to the product entity
structure. Some analysts prefer to think of the two-dimensional artifacts in the diagram as states
rather than activities or functions. Simultaneity is not permitted in normal state diagramming but
UML permits it in activity diagrams to cover decisions and branching in a way similar to that
applied in flow charting.

Alternatively, the analyst can use a sequence diagram to open the exposure of the details of a use
case scenario. The entities (classifiers) through which the functionality and behavior are explored
are identified on what are called the life-lines drawn as dashed lines below selected physical or

32

logical classifiers. These lifelines correspond with the swim lanes on the matching activity
diagram. Directed line segments connect these life-lines to show passage of messages and
relationships between the classifiers. As in the activity diagramming, these life-line decisions
may identify entities that already have been identified or they may involve entities not previously
identified. In the latter case, the PIT must concur in the model extension and add the new entities
to the product entity structure.

Each of these diagrams (activity and sequence) identify a lower tier (white box) view of what
entities will be needed to accomplish the exposed functionality and behavior, what will have to
happen in the system in order to achieve the intended goals of the use case signified in its name,
and offer a detailed view of the order in which these things will occur.

The analyst can allocate top-level functions (activities) to specific entities and arrange the blocks
of the activity diagram in corresponding swim lanes linked to these entities. These swim lanes
will correspond to nodes, or even higher-level entities, at the system level but in any case we can
refer to them in general as physical or logical classifiers within UML. If appropriate, analyze
each of these classifiers from a dynamic perspective using some combination of sequence,
communication, activity, and/or state diagram. The communication diagram shows the same
information as a sequence diagram with an emphasis on the entities rather than the relationships
between those entities. A state diagram is useful where there exists some finite number of
possible conditions within which the entity can exist and there appear to be understandable rules
for the entity to change from one condition (state) to another.

Identify requirements derived from these artifacts and capture them in a program-wide RAS
linked to the modeling artifact (MID) that encouraged their identification and the physical or
logical classifier, referred to more generally by a product entity ID (PID) in the RAS, that will be
responsible for responding to that requirement and in the specification for which it should reside.

2.2.2 The Connection Between Modeling Artifacts, Specification Content, and Product Entities

Figure 22 suggests a hierarchical relationship between the elements of the UML analysis and
offers a way of assigning MID. The capabilities in the specification format (template Paragraph
3.2) coordinate with terminators, use cases, extended use cases, and/or scenarios. Figure 22 only
shows one terminator expanded but the intent is that for any top level software classifier AX
(highest tier SW entities) entered into the product entity structure, one or more terminators would
be identified and expanded as shown in the one case shown in Figure 22. The software top-level
software classifier, AX, is, of course, a member of the product entity structure (PID) where X is
a string of base sixty or decimal delimited base ten numerals. The suggested UML MID stream is
identified first with a unique UXh MID (with h = e{1, 2, 3} in the example shown in Figure 22)
for each terminator.

The terminator MID can be further decomposed using the MID UXhijk pattern composed from a
set of use cases, possible extended use cases, and scenarios for each terminator h. These MID are
the entries to place in the RAS for software requirements derived from these artifacts. In general,
capabilities will be derived from these artifacts and the requirements subordinate to them will be
derived form the dynamic modeling artifacts UXhijk1 through UXhijk4.

33

Figure 22 Hierarchical Relationship Between UML Dynamic Modeling Artifacts

So finally, the requirements for each capability flow out of applying the subordinate UML
dynamic modeling artifacts. As in TSA with lower tier product entities identified from lower tier
function allocation, the lower tier software product entities flow from the sequence (life-lines)
and/or activity (swim lanes) diagramming. This is a particularly satisfying coordination between
lower tier entities being exposed through functional analysis in TSA and activity analysis in
UML where both are using essentially the same model to identify lower tier entities.

We can continue to apply UML in the lower tiers as covered in Figure 21 treating each classifier
as a system in accordance with the steps discussed above progressively identifying nodes,
components (possibly in more than one layer), and classes. If the system level problem space
was entered using UML as this process moves forward and downward, it will be decided that
some classifiers will be developed as software and hardware entities, with the latter possibly
splitting in lower tiers into hardware and software entities. The continuing analysis of hardware
entities can be accomplished using traditional structured analysis or SysML model artifacts while
the modeling of software entities continues primarily using UML model artifacts. In that it is

34

difficult for software to contain hardware, the use of TSA as the entry analysis probably makes
more sense.

At the lower tier UML analyses where the physical and logical classifiers are classes and objects,
the lines that flow between the classifiers on the corresponding sequence and communication
diagrams coordinate with messages and influences applied to/from those classes in relation to
external physical and logical classifiers (other classes generally at this level). This same effect is
in operation whether the classifiers depicted are classes, components, or nodes. Each classifier
must have identified for it one or more operations (services or functions) that it performs relative
to an outside set of actors and one or more data entities it deals with internally to accomplish
those operations. The data elements will flow into the classifier via the lines on the sequence and
communications diagrams and data may be created or altered internally. Initially, the analyst
may choose to first identify node, component, class responsibilities and subsequently as the
analysis matures translate these responsibilities into operations and attributes.

In lower tier analyses, the assigned IPPT are responsible for identifying and defining needed
interfaces below the level initially identified by the PIT. Where the two terminals of an interface
touch only entities that are the responsibility of a single team, that team is clearly responsible for
interface identification, definition, and integration. Where an IPPT is responsible for only one
terminal of an interface, that team must cooperate with the team responsible for the other
terminal to develop that interface. The integration agent in this case is the lowest common team.
If there is only a single layer of teams under the PIT, the PIT is always the lowest common team.
In general, it should be the team on the receiving end of an interface that first identifies the need
for a new interface since interfaces should not be defined based on what is available but what is
needed. If it is not obvious what team shall be responsible for the new interface, the PIT shall act
as the integration agent until such time as the source is identified and then the lowest common
team will take over that responsibility.

As IPPT identify lower tier entities during use case analysis, the PIT shall approve those
additions and assemble them into the formal product entity structure. These entities may be
physical or logical entities but eventually all of them must be identified as real product entities
that will be developed. These final entities can be logical entities as in the case of computer
software that will run on a particular hardware computer entity. Where it appears that lower tier
entities will entail significant complexity, new IPPT may be formed by the PIT that will be
subordinate to the appropriate existing IPPT. Those lower tier IPPT will take over the continuing
analysis of use cases appropriate at that level and the immediately superior team will take on the
role of the system engineer for the new team just as the PIT does for all top tier IPPT.

The use case analysis process employed by an IPPT or a collection of teams will necessarily be a
collaborative process involving people from several different specialty disciplines. Each such
team will have a leader whose responsibility it is to bring the analysis to a conclusion as
scheduled. These teams will come into being, exist for a brief period of time, come to a
conclusion, and pass from the scene with others replacing them. Once a use case analysis has
been completed by a team, the work products will have been captured in modeling applications
and integrated relative the existing work products. The modeling front will move down through
the advancing product entity structure till the system is fully characterized.

35

Where personnel from other teams are required to accomplish work on another team's use case
analysis, the owning team will cover the manhours of all personnel working the use case. Where
all team members are physically collocated in the same facility, they may be depended upon to
interact well through a traditional meeting in the common facility. Where at least some of the
people required on a use case analysis effort are not collocated, it will be necessary to extend the
meeting place geographically through the use of a product such as webex where people from
several different geographical locations can cooperate in the development of a set of information.

Leaders of use case analysis teams are responsible for the prompt completion of team activity
with good results but in so doing they will be well served to identify the most effective
collaborative engineer on the team to lead collaborative team activity in the form of meetings
especially where those meetings entail the use of distance integration aids like webex. The
collaborative discussions in meetings need not necessarily be led by the team leader.

As the team completes its modeling and requirements work, the results should be reviewed by
the parent team and, if approved, the team should be empowered to proceed with design at a
level appropriate to the team responsibilities. The team must continue any responsibilities it may
have for integration and optimization and leadership of subordinate teams that may still be
involved in modeling work. This design work will entail some combination of hardware and
software design development.

2.2.3 Dynamic Modeling Artifacts Explained

The use case diagram is considered a dynamic modeling artifact also but it is treated here as a
transition medium between classifiers and the dynamic model set. The remaining dynamic
models are implemented in four diagrams from which we may select any subset including all of
them, any one of them, any pair, or any trio for a particular scenario analysis. It is not necessary
to use them all for any particular analysis. Use those that make it possible to understand the
problem space and properly characterize it in requirements. Some very large programs have done
much of the analysis with only use case and sequence diagrams. The more complex the problem
space and the more intimately the parts of the evolving system interact, the more different views
of problem space that will be useful.

The first two kinds of diagrams covered, sequence and communications are both modeling the
same relationships and collectively referred to as interaction diagrams. The sequence diagram
emphasizes the time ordering of messages and the communication diagram emphasizes the
organization of the objects that participate in the interaction. The second two are forms of state
diagrams in the mind of many analysts.

2.2.3.1 Sequence Diagram

Some programs apply only the sequence diagram to explore the dynamic behavior of use cases
and this may be adequate on relatively simple problems. In this tutorial we are assuming that the
analyst employs the sequence diagram as the initial dynamic model, though an alternate
approach would be to use the activity diagram for that purpose, but uses at least some of the

36

other three models to explore the use case more thoroughly. The sequence diagram example in
Figure 23 illustrates the fundamentals showing two classifiers that comprise the classifier AX
that has previously been analyzed. Here we conclude that AX must consist of AX1 and AX2 and
that in order to accomplish the behavior defined for AX these lower tier classifiers must interact
with an outside entity called an actor which will derive some kind of benefits from the
relationship. The two subordinate classifiers will provide certain operations that are not clearly
defined on this diagram. In the process of doing so, they will exchange messages in a certain
order with time running down the page.

Each classifier including the actor has a lifeline in the form of a dashed line running down the
page. A block is overlaid on this dashed line to indicate the active period(s) of classifier.
Between these classifier lifelines we see messages being passed from one classifier to another.
The names of these classifiers are formed of one or more words concatenated together without
spaces and all but the first word capitalized. After the message name one can insert an argument
list parenthetically.

The model permits the creation of classifiers and when they have performed their activity they
can be killed. These features are not illustrated in Figure 23. The kinds of messages identified
are: (1) a call invokes an operation on a classifier on the arrow end of the message, (2) a return
message returns a value to the caller (dashed line used), (3) a send message sends a signal to a
classifier, (4) a create message creates a classifier, and (5) a destroy message destroys a
classifier. Message two and four could be an example of messages types 1 and 2. Message three
is an example of message type 1 where the classifier is making the call upon itself.

Figure 23 Sequence Diagram Example
After a classifier sends a signal to another classifier the sending classifier returns continues its
own execution. The target classifier independently decides what to do about it. A common
reaction would be to trigger a state machine causing the target classifier to execute actions and
change state.

Argument List

Actor

Time

a:Classifier AX1 b:Classifier AX2

messageOne() messageTwo()

messageFour()

messageFive()
message
Three()

Classifier AX

Lifeline active

37

2.2.3.2 Communication Diagram

In some cases we are primarily interested in the time ordered sequence of messages between
classifiers but in other situations we may be more interested in the organization of the classifiers
and a communication diagram can offer better results even thought the sequence and
communication diagrams are semantically equivalent. Figure 24 illustrates a communication
diagram reflecting the same situation as Figure 23. The classifiers are joined by lines
corresponding to the relationships between them and messages are related to these line each in
terms of message name, direction, and the relative timing of the message.

Figure 24 Communication Diagram Example

2.2.3.3 Activity Diagram

An activity diagram can be used to express the things that one or more classifiers must
accomplish. It is weak in terms of absolute timing of accomplishing those things but strong in
expressing the relative order of those things. As shown in Figure 25, activities are illustrated by
rounded corner boxes and they are connected into a sequence by directed line segments. In
addition to the activities, we also will wish to show simultaneity through the use of forking and
joining structures and alternative paths using branch and merge structures. The guard expressions
give information about the conditions that correspond to movement through one branch or
another.

This is the functional flow diagram of UML though many analysts prefer to think of the blocks
as states rather than functions. The author prefers not to consider them states because it is in
conflict with the notion that an entity must be in only one state at a time.

The diagram can be built with swim lanes, or not, that relate to classifiers, the same classifiers
identified on sequence diagrams using the lifelines. It is through these two devices that we can
allocate software functionality to classifiers. As we do so we determine the next lower tier
product entity structure and should offer up newly identified entities to the PIT for inclusion in
the product entity structure.

Actor a:Classifier AX1 b:Classifier AX2

messageOne()
messageFive()

messageTwo()
messageFour()

messageThree()
1

2

3

4

5

38

Figure 25 Activity Diagram Example

2.2.3.4 State Diagram

An interaction diagram (sequence or communication) models the relationships between a
collection of classifiers while a state machine models the behavior of a single classifier. The
classifier in this case can be the whole system or a classifier at any level of abstraction. The state
machine models the possible condition that a classifier can exist in and the transition of that
classifier from one condition or state to another based on a stimulus that might be a signal from
another classifier, the passage of time, receipt of a call message invoking an operation, or a
change in some condition.

A sate is drawn on a state diagram, as shown in Figure 26 showing a state machine for
temperature control, as a rounded corner box with the name of the state written inside. Generally
the diagram must have an entry and final state symbols though it is possible that once entered the
state machine may continue forever. In some cases the intent may be for the machine to continue
forever, as in a traffic light system, the reality is that such a system may have to be shut down for
maintenance and does need a final state. Transitions between states triggered by events in the life
of the classifier being modeled are shown diagrammatically as directed line segments between a
pair of state and named in a way to convey how that transition is triggered. It is understood that
the machine must be in only one state at a time and that only a single transition is possible at one
time. Transitions are generally thought of as taking place instantaneously.

Activity one

Activity three Activity two

Activity fiveActivity four

Fork

Join

Initialization

Branch

Swimlane 1

Completion

Swimlane 2 Swimlane 3

Merge

[guard expression 1]

[guard expression 2]

39

Figure 26 State Diagram Example

While UML does not prescribe it, a pair of dictionaries can be helpful in clearly stating the
intended operation of a state diagram. One dictionary lists the states and defines them with
precision while the other lists and defines the transitions. You will note that the transitions in
Figure 26 have not been named uniquely but should be in the general case so that each can one
can differentiate between them in such a listing.

2.2.4 Static Entity Analysis

In early object oriented analysis (OOA) as prescribed by Grady Booch, Peter Coad teamed with
Edward Yourdon, James Rumbaugh, et. al., and many other practitioners, the proper way to enter
problem space was using the static view with objects. Then they encouraged the analysis of the
objects from a dynamic perspective with data flow diagrams for functionality and state diagrams
for behavior. This approach is possible with UML using the foursome of dynamic modeling
artifacts discussed in the prior section and it can be effective when developing a largely
precedented system that can be observed in the real World like a new payroll system. The author
believes that largely unprecedented problems are best attacked using Sullivan's encouragement
of form follows function leading with the dynamics views and identifying the static entities that
populate the product entity structure from a software perspective.

UML identifies three levels of static entities but they are all product entities and while drawn on
modeling diagrams using different images, they are essentially the same at different levels of
abstraction. All are simply illustrated on the system product entity diagram illustrated in Figure
14 as blocks. Figure 27 illustrates the three static entities collectively referred to as classifiers in
this tutorial.

Idle

Cool Heat
tooCool

tooHot

atTemp atTemp

tooHot tooCool

Transition

State

Initial State Final State

40

Figure 27 The UML Static Classifiers

In this tutorial the case is made for first identifying the nodes which are entities that will be
associated with run time software. They are higher-tier entities. Like classes and components,
they have associated attributes and operations. They interface with each other and possess lower
tier interfaces between components and classes that comprise them. The nodes are identified in
the dynamic analysis of the top-level software entity by identifying sequence diagram lifelines
and activity diagram swim lanes. We then analyze these nodes from a dynamic perspective and
identify components in the same fashion.

The alternative approach first identifies classes corresponding to observable entities in the
problem space which are then dynamically analyzed leading to an understanding about how best
to package these entities based on collecting the classes with the most intense interface
relationships together as components. Just as in the use of interface analysis in TSA to validate
the product entity decisions in functional analysis by observing possible unintended interface
intensities, we can in UML re-consider the particular swim lanes and lifelines we selected in the
dynamic analysis.

In this section, the intent is to explain what the UML static entities are and how they are used on
diagrams. We will use classes in order to do so with the understanding that nodes and
components are but higher tier classes. First we will describe a general class then explore
structural relationships between these classes and finally we will cover the messages that are
passed between them.

2.2.4.1 The Class

A class is illustrated as a box as shown in Figure 27c. The name of the class is placed in the top
portion of the box, attributes are listed in the middle portion of the box, and operations are listed
in the lower portion of the box. A forth box can be included below the operations in which we
inscribe class responsibilities in free-form text. A responsibility is a contract or an obligation of a
class. You may find it useful to begin the analysis of classes this way translating these into
attributes and operations that best fulfill the class’s responsibility as the model is refined.

41

2.2.4.2 Class Relationships

Figure 28 illustrates the structural relationships recognized between classes. A class is said to be
dependent on another if it depends on that other class for information or services. A class can be
linked hierarchically to another through a generalization. Class associations can have the three
adornments illustrated in Figure 29.

Figure 28 Structural Relationships

Figure 29 Association Adornments

NameOne

NameTwo NameThree

generalization association

dependancy

NameFive

NameFour

NameOne depending on
NameFour for information and
services.

NameOne is the
base class.
NameTwo and
NameThree are
leaf classes in a
generalization.

An association is a structural relationship

NameOne NameTwo
Association name

• Association Name

• Association Role

• Association Multiplicity

• Association Aggregation

Aggregation

Whole

Part

The face that the class at the far end of an
association presents to the class at near end of
the association. Role names called end names.

Tells how many objects may be connected
across an association instance. Given by a
range of numbers.

role role

x..y

Expresses a whole-part relationship between to
associated classes.

42

2.2.4.3 Messages

Classes can also be related through the five kinds of messages discussed in Paragraph 2.2.3.1.
Such a message can convey to a class a variable argument (value) that is needed in a class
operation or it can convey a signal that causes the class state machine to transition to a new state
for example. The messages that must be passed between classes are understood in the context of
the sequence diagram under the assumption that the dynamic analysis is accomplished prior to
the static analysis.

2.2.5 Related Analyses

2.2.5.1 Specialty Engineering

The specialty engineering matrix discussed in paragraph 2.1.9 can be used in software as well as
hardware to identify all product entities for which specialty engineering requirements must be
developed. This includes, for example, safety, reliability, and security. The software interface
requirements fall out of the sequence and communication diagram analyses and flow into the
specification template offered in Figure 27.

2.2.5.2 Environmental Requirements

Software environmental requirements are somewhat different from the hardware and system
environmental requirements that tend to be dominated by the natural environmental factors. The
software being an intellectual entity rather than a physical one, is shielded from the natural
environmental stresses. True, the software operating within a machine that can suffer adverse
environmental stresses can as a result fail, but this is a secondary effect. Reasonable software
environmental relationships include any language restrictions and the computer architecture upon
which it must run, for example.

2.2.6 Specification Structure

The specification outline offered in Figure 5 can also be applied to software entities where the
capabilities are linked to either the terminators, use cases, extended use cases, or scenarios and
the subordinate requirements listed under each capability are drawn from the corresponding
dynamic diagramming (activity, sequence, communication, and state diagramming) work. Thus
the requirements can be clearly shown to trace to modeling artifacts just as the performance
requirements in hardware can be shown to flow so clearly from functions. Figure 30 offers an
outline for a software requirements specification (SRS) using an edited template from EIA J STD
016 to integrate the supporting modeling work into the specification. Note the similarity to the
outline in Figure 5 for a system or hardware item performance specification.

43

PARA TITLE MODEL DEPT APP
----------------- -- ---------------------------- ------- ---------
1. SCOPE DID 2100
2. APPLICABLE DOCUMENTS DID 2100
3. REQUIREMENTS DID 2100
3.1 Required states and modes DID 2100
3.1.1 Classifier context diagram DID 2100
3.1.2 Use case analysis DID 2100
3.1.2.h Terminator h DID 2100
3.1.2.h.i Terminator h, use case i DID 2100
3.1.2.h.i.j Terminator h, use case i, extended DID 2100

use case j
3.1.2.h.i.j.k Terminator h, use case i, extended DID 2100

use case j, scenario k
3.1.3 Dynamic Analysis DID 2100 D
3.1.3.h Terminator h dynamic analysis DID 2100
3.1.3.h.i Use case hi dynamic analysis UML 2100
3.1.3.h.i.j Extended use case hij dynamic analysis UML 2100
3.1.3.h.i.j.k Scenario hijk dynamic analysis UML 2100
3.1.3.h.i.j.k.1 Sequence diagram hijk1 analysis UML 2100
3.1.3.h.i.j.k.2 Communication diagram hijk2 analysis UML 2100
3.1.3.h.i.j.k.3 Activity diagram hijk3 analysis UML 2100
3.1.3.h.i.j.k.4 State diagram hijk4 analysis UML 2100
3.1.4 Lower tier classifier identification UML 2100
3.2 Entity capability requirements UML 2100 A
3.2.m Capability m UML 2100 A
3.2.m.n Capability m, requirement n UML 2100 A
3.3 Interface requirements UML 2100 D
3.3.1 External interface requirements UML 2100 D
3.3.1.m External interface m UML 2100 D
3.3.1.m.n External interface m, requirement n UML 2100 D
3.3.2 Internal interface requirements UML 2100 D
3.3.2.m Internal interface m UML 2100 D
3.3.2.m.n Internal Interface m, requirement n UML 2100 D
3.4 Specialty engineering requirements DID 2100 E
3.4.m Specialty Engineering Discipline m Specialty Scoping E
3.4.m.n Specialty Engineering Discipline m, Specialty Scoping E

Requirement n
3.5 Environmental conditions 3-Layered Env Model 2100 B
3.6 Precedence and criticality of requirements DID 2100
4. VERIFICATION DID 2100
5 PACKAGING DID
6. NOTES DID 2100
6.1 Requirements traceability DID 2100
6.1.1 Inter-specification traceability DID 2100
6.1.2 Verification traceability DID 2100
6.1.3 Modeling traceability DID 2100
6.1.4 Section 2 traceability DID 2100
6.1.5 Programmatic traceability DID 2100
6.2 Glossary DID 2100
6.3 Specification maturity tracking DID 2100

Figure 30 Software Requirements Specification (SRS) Template

44

Refer to Exhibit B of this student manual for a JOG System Engineering data item description
(DID) that shows how the subparagraphs of paragraph 3.1 relate to the subparagraphs of
paragraph 3.2. Paragraph 3.1 essentially provides an opportunity to capture the complete UML
analysis for the classifier covered in the specification. This can be done by actually including the
diagrams discussed in prior paragraphs in this text or by referencing them in a computer
application within which the modeling is done and derived requirements captured or the
diagrams can be completed manually (or with a computer graphics application like Microsoft
Visio or Powerpoint) and contained in the appendices of the system definition document (SDD).

The reader will note that in Figure 19 there is a second plane labeled UML for the case where the
program chooses to capture the UML analysis work products in the SDD. On a program that is
dealing only with a UML analysis for a software product the Appendix structure shown in Table
1 column A could be used. If the program must deal with both TSA and UML, the software
appendices could be simply added to those required for TSA and lettered G through N with the
TSA Appendix G (the RAS that should also contain the software requirements derived from
UML artifacts using the MID pattern illustrated in Figure 22) becoming a common RAS in
Appendix O. The latter pattern is captured in column B. In this combined case, the classifier
diagramming can remain in Appendix N but Appendix C should capture the aggregate product
entity structure including hardware and software entities.

Table 1 Independent and Combined SDD Appendices

A B MODEL ARTIFACT
------- -------- --
A G Context Diagrams
B H Use Case Diagrams
C I Scenarios Text
D J Sequence Diagrams
E K Communication Diagrams
F L Activity Diagrams
G M State Diagrams
H N Classifier (Object, Class, Component, and Deployment) Diagrams
I O RAS

The reader should note that in software using UML it is possible to relate the modeling
machinery very clearly with the classifiers about which specifications are to be written. It is not
quite so easy in hardware using TSA because all of the performance requirements derived from a
particular function may be allocated to the same entity. It might be possible to force fit the
functions into a closer alignment with the product entity structure by restarting the functional
analysis for each entity identified but the author does not think this would be particularly helpful.

2.2.7 Software Requirements Close-Out

When a set of classes that collectively form a component have been thoroughly characterized
including the sets of requirements associated with those classes and dynamic relationships and
the related requirements have been captured, reviewed, and approved, the responsible team can

45

start to develop the computer code that will implement the component. This process can begin
across the lower tier of the components and continue to next assemble into computer code for the
nodes. This process may take place in a single string or simultaneously following the same
pattern in multiple paths where the software is distributed to some extent. There is, of course, a
continuing need for integration and optimization across the development being accomplished by
different teams that focus primarily on interfaces just as in hardware development.

The PIT and program manager will reach a conclusion for the program with possible local
differences whether to pursue software design and coding in a top-down or bottom-up fashion. In
either case, any code developed must be tested at each level of build. This may require the
development of special stub (top-down) and/or drivers (bottom-up) to permit testing of
completed portions before higher or lower tier software has been completed.

The classifiers identified in the UML analysis should be entered into the product entity structure
by the PIT so that a consolidated view of the overall system matures. Figure 31 shows the
product entity structure evolving based on feed from all modeling activities being applied on the
program under the watchful integrating eye of the PIT.

Figure 31 Evolving Product Entity Structure

The UML analysis process encouraged does involve a partitioning of the whole problem space
into parts hierarchically arranged and assigned to teams. These teams, in hardware and software,
can generally be depended upon to integrate and optimize at the level for which they are
responsible rather than the next higher level. Therefore the PIT (and superior IPPT) must
integrate and optimize across the best efforts of the teams. The PIT should also consider special
integration studies across the grain of the system based on overarching functions such as
shutdown and activation as well as others that may be suggested through system level states and
modes analysis. These efforts should be led by the PIT and participated in by people from a wide
range of teams.

2.3 Opening the Analysis With DoDAF

DoDAF was developed to support modeling of the complex information systems that DoD has
been assembling in recent years to interconnect their many sensor and weapons systems to form

46

an effective military capability often referred to as sensor-to-shooter connectivity. It does not
provide a complete modeling set primarily because of the absence of a model artifact for the
physical product entities. The product entity view can be provided by augmenting the DoDAF
model set with the TSA product entity diagram, however, from the aggregate model set this
description assembles. Physical products identified in the DoDAF process can be inserted into
the TSA product entity diagram just as they can be using any of the model sets and as suggested
in Figure 31.

The DoDAF problem space entry is similar to the UML entry and in fact can use some UML
artifacts to do so. DoD does not prescribe any particular set of modeling artifacts for the several
views. In this paper we will use a combination of UML, IDEF, and TSA artifacts. DoDAF
employs four modeling views: (1) two all view products that offer a textual overview of the
system (as in what was once called a mission need statement) and an overall glossary explaining
all terms used; (2) two technical view products that define standards that must be respected on
the program and the evolution of those standards over time; (3) nine operational view products
that capture how the user views their needs; and (4) thirteen system view products that offer the
engineering perspective on the needed system. Figure 32 illustrates a recommended DoDAF
development sequence. The simulation work could better be shown overarching both the analysis
and design work interacting with and serving both. Note that the two all and two technical views
would be a good addition to any modeling apparatus.

Figure 32 DoDAF Development Sequence

The technical and all views work products should be developed initially by the user and
acquisition agents and evolved by the contractors selected to develop the system. The user
should have developed the operational views in the process of evolving a set of documents used
to refine their need. These documents include a Joint Capabilities Document (JCD that takes the

USER
MODELING

OF PROBLEM
SPACE USING

PRIMARILY
OPERATIONS

VIEWS

CONTRACTOR
MODELING OF

PROBLEM
SPACE USING

PRIMARILY
SYSTEM VIEWS

COMBINED
MODELING OF

ALL VIEWS

COMBINED
MODELING OF

TECHNICAL
VIEWS

TV-1
TV-2

OV-1
OV-2
OV-3
OV-4
OV-5

OV-6a,b,c
OV-7

SV-1
SV-2
SV-3
SV-4
SV-5
SV-6
SV-7
SV-8
SV-9

SV-10a, b, c
SV-11
and all

other views

EVOLUTIONARY FEEDBACK

AV-1
AV-2

SIMULATION
WORK

SOFTWARE
DESIGN AND

CODING

NEED SYSTEM AND SW
SPECIFICATION
DEVELOPMENT

JCD, ICD, CDD, CPD
USER DEVELOPMENT

System Analysis and
DoDAF IS Analysis

47

place of the old need statement cut very broadly. In the study process prescribed by DoD for a
new system, the capability identified in the JCD may be cut up into n systems each of which
should have developed for it an Initial Capabilities Document (ICD) that is the equivalent of the
old mission needs statement for a given system to be procured. The ICD is then matured into a
Capabilities Development Document (CDD) and eventually a Capabilities Production Document
(CPD). In between these last two a contract would commonly be let resulting in the development
of a system specification attached to the contract. DoDAF can be used to gain a systematic
insight into the content needed in all of these documents.

2.4 Integrated Modeling

A program must make a decision about the modeling techniques it will apply as it builds the
proposal. This may include some mix of TSA, UML, SysML, DoDAF, and IDEF-0. A program
that is going to be primarily computer software or networked assets could enter the program with
UML or DoDAF. If the product is a database, it could enter with IDEF-0 or UML. But,
generally, modeling entry should involve the use of TSA or SysML at the system level because
software, an intellectual entity, must run on hardware entities that provide the product with real
substance. As noted earlier, at the time this was written SysML was not yet fully ready for use so
TSA would be the author's preference now. But, an enterprise should continue to follow the
development of SysML and work toward replacing TSA with SysML. In any case, there is a
need to recognize that for some period of time there will be a need for a model that works well
for systems and hardware and another model that works well for SW. For now, also, there is not
one great computer application within which one can model HW and SW requirements work and
permit easy cross model traceability and provide specification publication capability so it will be
necessary to use two or three applications to cover the needed tool set.

Work can be accomplished well for systems and HW as covered under paragraph 2.1 and for SW
using the approach covered under paragraph 2.2. When applying both, problems will tend to
arise when transitions have to be made between these two approaches. It is not possible for SW
to include HW but the opposite case is perfectly normal. So, the transitions will only be a
problem as the analysis shifts from HW to SW moving from the use of TSA or SysML to UML.
There are two concerns at this point: one in the models applied and the other in the computer
applications employed.

The transition point will occur when the highest tier software entities are identified. There may,
of course, be several of these transitions distributed about the expanding product entity structure.
The program has the option of pooling all of the software into an integrated entity or permitting
it to be distributed within multiple processors that may still all be under the responsibility of one
team or distributed among teams with both hardware and software responsibilities. If we can
solve one of these hardware-software handoffs we will have solved the general problem of
requirements traceability across these gaps.

It should be clear that requirements traceability to models is assured in the approach covered in
this tutorial because all of the requirements are to be derived from a model. Vertical or
hierarchical requirements traceability is very simple in specialty engineering areas in hardware,
software, and across the gap as described in this tutorial. The environmental requirements are

48

vitally different between hardware and software and one can make a case that lower tier software
environmental requirements should not have to respect traceability across the gap to higher tier
hardware or system environmental requirements that are largely environmentally related.
Precisely the same method of identifying hardware interface requirements can be used to identify
software interfaces as well as hardware-software interfaces because we identify them between
entities that appear in the joint product entity structure. So, if interface requirements traceability
involves lower tier interface expansion requirements to higher tier interface requirements,
traceability is assured. This leaves only the performance requirements a remaining problem from
a vertical or hierarchical traceability perspective.

Given that the system entry analysis was accomplished in TSA using some form of functional
analysis and the lower tier software analysis is going to be done using UML, there is a
temptation to employ activity diagrams in UML to analyze software entities from a dynamic
perspective because it is very similar to functional flow diagramming and might give us some
interesting opportunities to link up hierarchical traceability. However, for a given software entity
there may have been 10 performance requirements derived from 8 functions allocated to the
software entity in question. There is no clear way to link up the activity analysis and
requirements derived from it with the several functional analysis strings and the performance
requirements derived from them that can easily be automated.

So, let us pursue another tack in an attempt to coordinate the traceability relative to the sequence
oriented dynamic analysis approach described previously. If requirement R%1 is one of a set of
requirements R%1 through R%10 where R%1 is derived from function F#1 of a set of functions F#1
through F#8 and requirement R%1 is allocated to product entity AX2 and it is decided that AX is
going to be developed as a software entity, then one of the scenarios to be analyzed will be
UXhijk. Assume that we accomplish the dynamic analysis using sequence diagram UXhijk1
from which we derive requirement R@1. What we are looking for is a way to establish
hierarchical traceability between requirement R@1 and some requirement in the set R%1 through
R%10. The X, %, and # characters are being used to designate base 60 strings in this discussion.
We know that requirement R@1 must be traceable to one of the 10 performance requirements
allocated to classifier AX2 and we can look at that list of requirements and select the one most
closely related.

To make this selection more organized, we can form an x by y matrix, in this case a 10 by 12
matrix, and pair-wise compare the sets R@ and R%. In Figure 33 you can see this whole process
taking place The 10 functionally derived requirements are captured in the RAS mapped to the set
of functions F#1 through F#8 and allocated to product entity A&. Based on these requirements we
build a context diagram for entity A& and analyze A& from the perspective of each of the three
terminators shown. As an example Use Case U&3 is extended to three use cases and we build
three scenarios one of which, U&3111 is analyzed from a dynamic perspective with some
combination of sequence, communication, activity, and state diagrams. Requirements R@1
through R@12 are derived from these analyses and captured in the RAS (possibly linked to the
RAS database from a UML modeling application).

There are 10 requirements (R%1 through R%10) to which the requirements in the set R@1 through
R@12 will have to hierarchically trace. We can build a 10 x 12 matrix and pair-wise analyze the

49

relationships between the two sets of requirements, perhaps concluding that one of the matches is
R@1 traces to R%1. All of the matches are marked in the requirements management database
table for traceability relationships. There are no known databases that provide the traceability
evaluation matrix so it may have to be accomplished as a pencil and paper aid. However we
should be able to set the requirements management database filter for the two sets of
requirements of interest aiding in the identification of the sets of interest for a particular case. In
this example, there might be ten or more sets of requirements like R@ derived from ten or more
dynamic analyses. In each case an x by y matrix would be needed to pair-wise analyze the
traceability relationships. In any case, it should be clear that we can have good requirements to
modeling traceability and even good hierarchical traceability across the gap between
performance requirements.

Figure 33 Requirements Traceability Across the Gap

In both TSA and UML we have discussed a decomposition process that partitions the problem
space into parts in which the analysis is accomplished. Whenever we partition any whole we
have an obligation to integrate and optimize across the boundary conditions thus created. The
PIT must accomplish this integration work relative to the top level IPPT and each IPPT with
lower tier teams must accomplish this work relative to it's own immediately subordinate teams.
Much of this integration work will take place at the interfaces ensuring that requirements on one
end of an interface are compatible with those for the other terminal. Each team with subordinate
teams, however, should also integrate across its immediately subordinate teams relative to the
requirements derived at the subordinate team level relative to those at the parent team level. Part
of this work can be accomplished by simply establishing the traceability between the
requirements at the two levels. Another approach of value is to accomplish higher tier function
effects across the lower tier team responsibilities. For example, one can inquire collaboratively
into lower tier performance of higher tier functions like turning the system or entity on or off,

50

moving from one major mode to another, accomplishing some kind of transfer function, or
physical separation or joining of two entities.

Another kind of traceability can also be used to stimulate integrating results. This was pointed
out to the author by an engineer at Puget Sound Naval Base in Bremerton, WA. Given a
requirement at level m, we can inquire if the intent of the requirement was fully implemented in
the requirements for the n entities at level m+1 (downward). This kind of traceability inspection
must await the development of the subordinate specifications, of course, as does all hierarchical
traceability.

At one time, in the 1950s when software was a very young discipline, it happened that hardware
and software analysis, to the extent that it was done, was accomplished using exactly the same
model, flow charting as shown in Figure 34. Over time, probably encouraged by the ease with
which flow charts could be outputted onto line printers using ASCI symbols, computer software
people got into the habit of building flow charts in the vertical rather than the horizontal axis still
used by system engineering in their functional flow diagrams. The activity diagrams of UML
still reflect the vertical orientation but it is really of little significance which orientation is used.
The absolutely fascinating approaching reality is that system and software people will rejoin the
same house in the near future. As UML and SysML become more fully integrated as suggested
in Figure 34, we will achieve a tremendous milestone of universal unified modeling capability.

Figure 34 Modeling Over the Years

As we pass through this door into a world of integrated modeling and supporting computer
applications, we will find it a more reasonably affordable task to integrate across the hardware-
software boundary than has been the case for many years. But then as now, integration takes
place in the minds of the system engineers working on the program. These engineers must be

Traditional
Structured
Analysis

Flow
Charting

Modern
Structured
Analysis

Early
OOA

UML
DoDAF

SysML

1950s 2010s

Data
Models

Utopia

FFBD
IDEF
EFFBD

51

every vigilant for inconsistencies between information sets that signal that two different domains
are not working from a common understanding of the problem and solution spaces.

Figure 35 The Approaching Merge

3 Requirements Management

3.1 Summary of Team Activity During Requirements Work

During initial product development work, the PIT will model the problem space using a
predefined set of modeling methods selected from the list of enterprise-approved modeling
methods and apply those methods to identify top-level system entities and interface relationships
and their requirements. This level of system definition shall be completed before program level
IPPT are initiated on the program and staffed. These top-level product entities are the basis for
assignment of these teams. When a team is established, the leader shall be presented with the
specification for the top-level entity for which the team shall be responsible, a design concept (in
particular if it is HW or SW), a clear definition of all external interfaces, and the corresponding
components of the WBS, SOW, IMP, and IMS. The team will be charged with the development
of that item and all subordinate entities and interface relationships. In the process of so doing, the
team may conclude that lower tier teams are required and must request that action of the PIT.

The work products from the IPPT will be loaded into the computer applications used on the
program by PIT and checked for consistency. The PIT shall perform integration and optimization
work on modeling work contributed by the IPPT fitting the work products into a coherent system
analysis of the problem space. As part of this work where the product is to be implemented in
SW, the responsible team will seek to identify all needed use case analyses and assign them for
completion by people on the team if possible. Where this work must involve people from other

52

teams, the responsible team must request help from the PIT and a cross team analysis effort will
be established. The responsible lead team must ensure that each analysis is complete with all
needed supporting modeling work.

The PIT shall maintain the product entity structure, the interface relationships, and all
requirements modeling and management assets. The requirements shall be retained in a relational
database from which specifications may be printed to paper or computer screen and within which
traceability may be maintained. This database shall be linked to one or more modeling
applications used on the program. The modeling applications shall be used for the purpose of
identifying the system entities, interfaces, and appropriate requirements in each case. All content
of these applications shall be under the control of the PIT until such time that it is formally
approved at which time it shall fall under configuration management control and shall not be
changed without a formal approval as well. Responsibility for data entry can be distributed to
IPPT or retained by PIT. Entry may be aided by special Microsoft Office applications making it
unnecessary for personnel to develop and maintain computer application skills.

The PIT will seek to establish IPPT overlaid upon the product entity structure so as to minimize
the interface relationships between the entities for which the teams are responsible. The purpose
of this arrangement is to minimize the need for cross team coordination and staffing for use cases
analyses.

The preferred lower tier HW development approach entails a continued application of TSA using
the same modeling database application applied at the system level. The preferred SW product
development approach entails PIT and IPPT application of unified modeling language (UML). In
the near term traditional structured analysis (TSA) will be applied in combination with UML
maturing to a combination of UML and SysML as the latter matures into a formally released
model by the Object Modeling Group. TSA or SysML are to be used initially to identify system
and top level product entities that will more often be hardware end items. As the analysis
proceeds downward and identifies a need for computer software, the analysis should switch to
UML.

3.2 Requirements Tools Base

Figure 36 illustrates the preferred tools environment for programs. A requirements management
database is used to capture all of the requirements that will be published in specifications and
those specifications may be published from this database. In Figure 36 this is referred to as a big
dumb database with no slur intended for the makers of tools that do not include integrated
modeling capabilities. This is a relatively simple relational database application that can contain
text information in a tabular structure. Each table row corresponds to a unique requirement with
data captured in table columns for the several fields needed. Additional relational tables may be
required for vertical traceability, verification traceability, and lateral (to models from which the
requirements are derived) traceability. The program may use available modeling applications for
UML (such as Rational Rose) and TSA (such as CORE) and arrange for traceability between
these applications and the management application in an application like DOORS.

53

Figure 36 Tools Environment

Many enterprises find it difficult for engineers to maintain currency with a set of requirements
database applications as well as other applications more directly related to their work. All or
most of these engineers will, as a function of accomplishing their normal work, maintain
proficiency with the three fundamental Microsoft Office applications (Word, Powerpoint, and
Excel). Loader applications crafted from Microsoft Office applications may be used to permit all
engineers to enter data into the requirements database suite without a need for the engineers to
become intimately familiar with these applications.

The PIT must exercise integration and optimization control over the requirements application
suite and will require some members who really understand the applications, how they work, and
how their content is inter-related.. The suit must be set up to permit passing control of approved
content to configuration management while retaining control of all in-work data.

3.3 Recommended Specification Responsibility Pattern

In the author's view, a program should staff a program integration team (PIT) that should begin
the requirements analysis process at the system level and develop the top level diagrams in the
SDD. This work should continue as necessary to develop the content of the system specification
and the specifications corresponding to the top-level teams. The structured analysis for each of
these teams should be taken over by the corresponding IPPTs in each case until they have
completed the content of the specifications that define the problem for any subordinate teams. If
no subordinate teams have been identified then they would have to complete the analysis needed
to develop all of the specifications subordinate to their top-level specification. This same pattern

FUNCTIONAL
ANALYSIS

WORK

INTERFACE
IDENTIFICATION

WORK

PERFORMANCE
REQUIREMENTS
ANALYSIS WORK

INTERFACE
DEFINITION

WORK

DATABASE
LOADER

INTERFACES

PRODUCT
ENTITY

SYNTHESIS
WORK

DATABASE
LOADER

INTERFACE
REQUIREMENTS

DATABASE
LOADER

PRODUCT
ENTITY

DATABASE
LOADER

PERFORMANCE
REQUIREMENTS

PERFORMANCE
REQUIREMENTS

ALLOCATION
WORK

SPECIALTY
ENGINEERING

SCOPING WORK

DATABASE
LOADER

SPECIALTY
ENGINEERING
DISCIPLINES

BIG
DUMB

DATABASE

DATABASE
LOADER

SPECIALTY
ENGINEERING
DISCIPLINE N

SYSTEM
ENVIRONMENTAL
REQUIREMENTS
ANALYSIS WORK

END ITEM
ENVIRONMENTAL
REQUIREMENTS
ANALYSIS WORK

COMPONENT
ENVIRONMENTAL
REQUIREMENTS
ANALYSIS WORK

THREAT
ANALYSIS WORK

END ITEM
DESIGN

CONCEPTS

SPECIALTY
ENGINEERING
DISCIPLINE N

ANALYSIS WORK

VERTICAL
TRACEABILITY

WORK

UML
MODELING
DATABASE

TRADITIONAL
STRUCTURED

ANALYSIS
MODELING
DATABASE

DATABASE
LOADER
ACTIVITY
DIAGRAM

DATA

DATABASE
LOADER

COMMUNICATION
DIAGRAM

DATA

DATABASE
LOADER

SEQUENCE
DIAGRAM DATA

DATABASE
LOADER

USE CASE
DATA

DATABASE
LOADER
STATE

DIAGRAM
DATA

DATABASE
LOADER

DEPLOYMENT
DIAGARM

DATA

REQUIREMENTS
DATABASE
TOOL SUITE

PUBLISH
SPECIFICATIONS

DATABASE
LOADER
END ITEM

ENVIRONMENTAL
REQUIREMENTS

DATABASE
LOADER
SYSTEM

ENVIRONMENTAL
REQUIREMENTS

DATABASE
LOADER

COMPONENT
ENVIRONMENTAL
REQUIREMENTS

DATABASE
LOADER

TEMPLATE

DATABASE
LOADER

COMPONENT
DIAGRAM

DATA

DATABASE
LOADER

OBJECT/CLASS
DIAGRAM DATA

ACTIVITY
DIAGRAM

WORK

COMMUNICATION
DIAGRAM

WORK

SEQUENCE
DIAGRAM

WORK

USE CASE
WORK

STATE
DIAGRAM

WORK

DEPLOYMENT
DIAGRAM

WORK

COMPONENT
DIAGRAM

WORK

OBJECT/CLASS
DIAGRAM

WORK

MAINTAIN
TEMPLATES

NEED

STANDARDS

COMPUTER
SOFTWARE

REQUIREMENTS
ANALYSIS

TRADITIONAL
STRUCTURED

ANALYSIS

MANAGE
REQUIREMENTS

SPECIFICATIONS

PROCESS
ANALYSIS WORK

DATABASE
MANAGEMENT

WORK

DATABASE
MANAGEMENT

WORK

DATABASE
MANAGEMENT

WORK

MODEL QA
AND CM WORK

MODEL QA
AND CM WORK

DATABASE
LOADER

ALLOCATION

54

carries down to the lowest level. Each team should act as the system agent for all of its lower tier
teams and principal engineers. This starts at the PIT for the system and works its way down
through the lower tier teams. The Program Manager and Chief Engineer/PIT Manager should
review and approve the system specification and all top-level specifications. PIT should establish
rules for review and approval of lower tier specifications created by the teams.

With different parties doing the structured analysis, it is necessary to apply process integration
and the PIT should do that accepting data into the several appendices of the SDD, numbering the
figures, and cross-checking the data submitted. At least one team will be involved in software
development and if traditional structured analysis has been applied for the system level, then that
or those teams responsible for software will want to switch to some form of software modeling
such as UML. Regardless of the modeling methods applied, all of the requirements modeling
artifacts should be captured in the SDD either in the paper appendices noted earlier or referenced
in the database systems used. The integrated RAS should be implemented in the big dumb
database of Figure 36 as simply the basic relational database table used to capture requirements.

3.4 Requirements Risk Management

The principal risks that appear during the requirements development work involve a sensed
inability to satisfy the requirements. The risk may be motivated by the conclusion that
insufficient financial, or schedule resources have been made available. The concern may be that
the requirement simply cannot be satisfied with available technology. Finally, the concern may
be motivated by the conclusion that the value is simply too hard to achieve with available skill
and knowledge. It is not uncommon to partition all into the categories of cost, schedule,
technology, and performance as a result.

3.4.1 Requirements Validation

EIA 632 identifies an activity called requirements validation where we make an effort to
determine to what extent we can satisfy particular requirements. The simplest way of reaching
this conclusion is to simply ask the person(s) responsible for accomplishing the related design
work if they can satisfy the requirements. If there is a lack of confidence then we need to proceed
further in our efforts to identify potential performance risks. As requirements are identified and
written we should validate them at that time. In most cases, the conclusion will be that there is no
problem. Should we conclude that either there is a problem or we are not certain that can satisfy
the requirement the first alternative investigated should be to ask if the requirement can be
changed making it more certain that it can be satisfied. If that is not possible, then we should
choose a means to mitigate the risk through an appropriate analysis, development evaluation test,
simulation, or demonstration. If we believe that the requirement is very important in the
development effort and that it will require some time to reach a final conclusion, we may select
the requirement for more intense management as a technical performance measurement (TPM).

Parameters are managed through TPM by placing them on a list and assigning each TPM to a
specific engineer who is charged with closing the gap between the required value and the
currently demonstrated capability. The parameter principal engineer must maintain two charts:
(1) a parameter chart that tracks these two values over time annotated with notes citing important

55

events coinciding with significant changes in the relationship between the values and (2) an
action plan stating what is going to be done, when, and to what anticipated effect.
3.4.2 Margins and Budgets

Every program manager will experience difficult problems each requiring a tough decision.
These problems can be made less severe by ensuring that the program manager has the resources
available. This outcome is encouraged where the values for the most difficult requirements are
combined with margins such that there is an opportunity to award engineers with a very difficult
design problem some slack. These margins come in three varieties: cost, schedule, and
performance. Cost margin is commonly applied as a management reserve such that the program
manager can award a team more cost to solve a problem. Similarly, if a team has a design
problem that can be solved through award of schedule slack time, the design may be possible.
The third kind of slack is requirements margins. In all of these cases, the margin is derived by
invariably making the job more difficult. Cost margin is often made available by skimming the
task estimates of 10-15%. Schedule slack is obtained by subtracting available time for tasks on
the critical path. Risky requirements are made more difficult to achieve. For example a weight
margin may be realized by subtracting 5% from all weight figures. So the engineers will be
challenged to accomplish their design with a weight value of required value - 5%. This is more
difficult, clearly. The good news is that engineers will most often make these more demanding
requirements preserving the margin values for the most difficult problems. When a very difficult
weight problem appears, the manager can allocate some available margin. The margins
invariably will be consumed before the design process is complete but there are ways of using
available margins from requirements not of the same kind. For example, if an engineer has
difficulty reaching his/her reliability figure after all of the reliability margin is gone, the manager
can award some cost margin to permit the use of better parts or some mass margin permitting a
heat sink that will reduce junction temperatures.

Requirements budgeting also has a risk reduction effect because it partitions available
requirement values to the several designs at any one level of indenture. For example, given that it
has been decided that 1500 watts of electrical power will be available from a source and there are
10 loads to be attached to this source, an engineer must partition this available power in a
rational way between these several loads and integrate the results.

3.4.3 Risk Tracking

Risk is often measured using a dual axis criteria dealing with the probability that the concern will
be realized and the degree of difficulty it will present if it does come to pass. This makes it a
little difficult to track a single risk parameter over time and the way many people apply the dual
axis system makes it difficult to accumulate a program metric that can be tracked over time. A
variation on the safety hazard index described in MIL-STD-882 offers a way to measure risk
with a single parameter that responds properly to characterize instantaneous values and a
historical record for the program.

Figure 37 shows the risk matrix. Tables 2 and 3 corresponding provide the dictionaries
explaining the values entered on the matrix axes. The intersections contain an index number that
is simply the product of the axis numbers.

56

Figure 37 Risk Matrix

Table 2 Risk Probability of Occurrence Criteria

CAT TITLE P(O) DESCRIPTION
----- ------------------------- ------------- ---
5 Nearly Certain 0.95-1.00 Will occur at least once during program
4 Probable 0.75-0.95 Will probably occur once during program
3 Possible 0.50-0.75 May occur during program
2 Unlikely 0.25-0.49 Will probably not occur during program
1 Nearly Impossible 0.00-0.24 Will not occur during program

Table 3 Risk Effects Criteria

CAT TITLE DESCRIPTION
----- ------------------------- ---
5 Catastrophic Program in jeopardy of termination
4 Serious Serious damage to program
3 Moderate Problems cause program focus difficulties
2 Minor Problems that can be easily be overcome
1 Null No problem

57

If you were to compare this information with the MIL-STD-882 safety hazard matrix, you would
find that the safety hazard matrix offered in the military standard uses letters for one of the two
axes and that the highest hazards (risks) have the lowest indices. Our matrix in Figure 37 uses
numbers on both axes and the index values are higher for more serious risks. Therefore, it is
possible to apply the index values in a mathematical sense as a program metric. Given the 6
program risks listed in the program risk list shown in Table 4 with the indicated risk index
values, the instantaneous program risk index is 97.

Table 4 Program Risk List

RISK RISK
NBR TITLE PROB EFF INDEX TM PRINCIPAL SUSP
------ --------------------------------------- -------- ------- --------- ----- ----------------- -------------
2 Life Cycle Cost 4 4 16 1 Burns 02-10-05
5 Payload Capacity 4 5 20 1 Adams 03-08-05
7 Stoddard Supplier Risk 5 4 20 3 Thornton 04-20-05
12 Program Funding 4 4 16 0 Connolly 03-10-05
15 Computer Software Schedule 5 5 25 4 Sampson 05-23-05

CURRENT PROGRAM INDEX 97

Thus, we have arrived at a program risk index or metric. If we maintain a chart of this metric
over time we see that it characteristically will rise early in a program as risks are identified but
there is a delay in mitigating them causing a rising metric as shown in Figure 38. As a program
progresses, this value will rise to a peak at some point in the program and subsequently start a
long decline. Risks continue to be identified so we see the accumulated total number of risks
continue to increase but the program is being successful in mitigating risks and later risks are
commonly lower in index than those identified earlier in the program.

Figure 38 Program Risk Tracking Chart

58

3.5 Verification Requirements

The author respects the six-section specification structure of the DoD specification standard
where Section 3 contains the product requirements and Section 4 the verification requirements.
For every product requirement in Section 3 there should be one or more verification process
requirements in Section 4. Whoever writes the Section 3 requirement should also write the
verification requirement and with little time between the two actions. The rationale here is that
the author of an unverifiable requirement will have some much difficulty writing a verification
requirement and this difficulty may stimulate them to look for better ways of writing the
requirement leading to a verifiable requirement.

We commonly respect four methods of verification: test, analysis, demonstration, and
examination. A verification traceability matrix should be included in every specification that
correlates every requirement in Section 3 with a method of verification and one or more
verification requirements in Section 4. Each one of the rows in the verification traceability
matrix forms a verification string. All of the verification traceability matrices are pooled into a
single program-wide verification compliance matrix shown in Figure 39 that lists every
verification string.

Figure 39 Verification Traceability

59

A verification engineer or team must now assign verification task numbers to all of the strings in
the compliance matrix. Each task is identified in a task matrix and coordinated with the name of
a principal engineer who must plan the task, make arrangements for the needed resources in a
timely way relative to the task, accomplish the task on schedule, and produce a verification
report. The reports from all of the tasks for a given item may be subjected to a configuration
audit by the customer to ensure that the contractor did meet all of the requirements in the
specification.

3.6 Specification Review and Approval

No matter the path the specification has taken through the requirements analysis process relative
to modeling, the program should pass it through a review and approval process before it becomes
a part of the formal configuration baseline definition. The review and approval process, shown in
Figure 40, offers a formal or informal peer review way of comparing the content of a
specification with a set of standards that all specifications should meet. Following approval, the
specification must be formally released, published, and made available to program personnel
either in paper or on-line form. The released specification must thereafter be formally protected
through configuration management. Any changes must pass back through this same process to
gain approval.

Figure 40 Specification Review and Approval

The formal review process should include a conscious evaluation of specification template
faithfulness and overall quality measured in accordance with a specification checklist. Next, the
specification should be checked for adherence with good traceability standards. The program
may choose to fully implement traceability standards shown in the figure or some subset thereof.
The final string of checks shown in Figure 40 assesses the specification for residual risk,
completeness and excess content. A decision is reached by the reviewers followed by the review
chairman calling either for corrective action or approval of the specification, if needed.

Specifications prepared on small or advanced programs may not have sufficient budget to
support a formal review process. In this case, while not as supportive of a low risk approach, a

60

specification can be reviewed by experienced people in a less organized fashion, called a peer
review. The team is assembled and asked to review the document either together or on-line at
their desk followed by a group meeting to discuss the content.

The master copy of each specification must be retained and protected by an assigned authority in
order to protect the integrity of the document. Once approved and released, this master must be
accurately identified and protected against change. In one organization the author recalls, the
master was changed during work on an engineering change proposal (ECP) but the ECP was
subsequently canceled. The organization no longer had a master for the specification in effect
because it had become corrupted by the change work that did not materialize. It helps to consider
each specification build or change a separate campaign that results in the release of a document
that will exist forever. If subsequently that document is changed, the change is built anew on the
preserved baseline past.

Specifications must be readily available to personnel working a program. As they are released
they must be distributed to those who need them. As they are revised the same is true of the
revisions. Years ago specifications were crafted with typewriters and type setting. These were
published in paper form and distributed using shoe leather and mail systems. If most of your
specifications are in paper media, you may have no near term option but to place them in a paper
document library from which program personnel may check them out physically. But, even if
this is the current case, you should be making plans to move to an on-line specification library
for cost, efficiency, and document configuration control purposes.

In a paper media, after a specification is formally released, the master must go to reproduction
where sufficient copies are made to cover the needs for distribution and the library. The master
should be returned to what the author has accurately heard referred to as the vault, a physically
secure facility (not in the classified data sense unless this is also a valid concern) where all of the
engineering masters are retained. The copies must then be physically distributed. If the
specification in question is also a customer-approved specification, another loop will be required
to gain their approval prior to distribution. A networked library will avoid a great deal of this
busy work.

Adios paper and good riddance. Even if you are currently using a paper media for distribution
you probably already have the resources in place to convert to networked computer media. It
requires specifications captured in computer file media, a network with adequate storage
capacity and speed, and easy access from work stations on the part of the people. These features
are present in most everyone’s shop today or are not beyond the pale to achieve. It is
unimaginable that anyone would use a typewriter today to prepare a specification so they will
always be created in some form of word processor or computer database. The results of this work
can be passed on to the document release function on a disk or via the network connection and
thereafter transferred to an on-line library from which anyone may open it but not change it.

A-i

JOG SYSTEM ENGINEERING, INC
GRAND SYSTEMS DEVELOPMENT

TRAINING PROGRAM
TUTORIAL

VOLUME 2R
AN EFFECTIVE SPECIFICATION DEVELOPMENT

ALGORITHM
STUDENT MANUAL

EXHINIT A
PRESENTATION MATERIALS

A-ii

1A2-1-

c JOG System Engineering, Inc.A-1-1
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

SPECIFICATION READINESS

JOG SYSTEM ENGINEERING, INC.
GRAND SYSTEMS DEVELOPMENT

TUTORIAL PROGRAM

AN EFFECTIVE SPECIFICATION
DEVELOPMENT ALGORITHM TUTORIAL

VERSION 10.1

c JOG System Engineering, Inc.A-1-2
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Who Is Jeff Grady?
CURRENT POSITION

President, JOG System Engineering, Inc.
System Engineering Assessment, Consulting, and Education Firm

PRIOR EXPERIENCE
1954 - 1964 U.S. Marines
1964 - 1965 General Precision, Librascope Div

Customer Training Instructor, SUBROC and ASROC ASW Systems
1965 - 1982 Teledyne Ryan Aeronautical

Field Engineer, AQM-34 Series Special Purpose Aircraft
Project Engineer, System Engineer, Unmanned Aircraft Systems

1982 - 1984 General Dynamics Convair Division
System Engineer, Cruise Missile, Advanced Cruise Missile

1984 - 1993 General Dynamics Space Systems Division
Functional Engineering Manager, Systems Development

FORMAL EDUCATION
BA Math, SDSU
MS Systems Management, USC

INCOSE First Elected Secretary, Founder, Fellow
AUTHOR System Requirements Analysis (1993, 2006), System Integration, System

Validation and Verification, System Engineering Planning and
Enterprise Identity, System Engineering Deployment

2A2-1-

c JOG System Engineering, Inc.A-1-3
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Specification Preparation Readiness
Specification Preparation Readiness
Traditional Structured Analysis
Traditional Structured Analysis

Unified Modeling Language
Unified Modeling Language
Requirements Management
Requirements Management

An Effective Specification Development
Algorithm Tutorial Outline

c JOG System Engineering, Inc.A-1-4
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Success Is Possible

• The Goal
– Good specifications

– On time

– Affordable

• The Plan
– A sound beginning - be prepared

– A clear path to a successful state - always clear what must be
done

– An effective closing - a specification review and approval
process

3A2-1-

c JOG System Engineering, Inc.A-1-5
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

What is a Specification?

A specification
contains all of
the require-
ments for a given
item.

c JOG System Engineering, Inc.A-1-6
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Word Requirement,
From The Dictionary

Something wanted or
necessary.

Something essential
to the existence or
occurrence of
something else.
A necessary character-
istic or attribute of some
thing (or item).

ITEM

4A2-1-

c JOG System Engineering, Inc.A-1-7
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

In Writing a Specification, What Is the
Target?

c JOG System Engineering, Inc.A-1-8
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

How to Hit the Target of
Minimized Completeness

• Every performance requirement traceable to a model from
which it was derived

• Every external interface for the item identified and defined in
interface requirements in the specification (unless ICD
applied)

• Every specialty engineering discipline that has been mapped
to the item is included in the specification

• Every environmental influence defined in the appropriate
model (system, end item, component) mapped to appropriate
specification content.

• Every requirement in the specification traceable to a parent
item specification requirement (ideally applies to the system
specification relative to user requirements as well).

• Requirements are quantified as appropriate to the statement.
• Requirements are validated (risks understood and mitigated).

5A2-1-

c JOG System Engineering, Inc.A-1-9
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Product Requirements Types

• Hardware
– Performance
– Constraints

• Interface
• Specialty Engineering
• Environmental

• One view of software requirements
– Functional
– Non-Functional
– Quality

• My view of software types
– Same as systems and hardware

c JOG System Engineering, Inc.A-1-10
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Requirements Types

PRODUCTION
PROCESS
REQUIREMENTS

PRODUCT
REQUIREMENTS

OPERATIONAL PROCESS
AND LOGISTICS SUPPORT
REQUIREMENTS

TEST PROCESS
REQUIREMENTS

SUPPORT
EQUIPMENT
TOOLS
TRAINING
PROCEDURES
FACILITIES
SPARES

PERFORMANCE REQUIREMENTS
CONSTRAINTS

INTERFACE
ENVIRONMENTAL
SPECIALTY ENGINEERING

All of these requirements must be identified before
product and process detailed design work is

started and they must be mutually consistent.

TUTORIAL
EMPHASIS

6A2-1-

c JOG System Engineering, Inc.A-1-11
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Attributes of a Good Requirement

• Achievable (validated)
• Quantified
• Achievable (validated)
• Verifiable/testable
• Unambiguous
• Complete (covers all cases)
• Performance specification

– Design independent
– What, not how

• Detail specification
– Design dependent

c JOG System Engineering, Inc.A-1-12
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Some Good Examples

Frequency coverage. Item frequency coverage shall be
225.0 to 399.9 Megahertz inclusive in tenth Megahertz
steps.

Weight. Item weight shall be less than or equal to 240
pounds.

Range. Maximum achievable range shall be greater than or
equal to 5,000 nautical miles while recognizing a fuel
loading safety margin of 10% or more.

Range. Maximum range shall be greater than or equal to
2,500 nautical miles.

Reliability. Item MTBF shall be greater than or equal to
10,000 hours.

7A2-1-

c JOG System Engineering, Inc.A-1-13
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Some Bad Examples

• The screens used in the system shall be designed in a
user friendly manner.

• Item weight shall not be greater than 153 pounds.
• Aircraft shall identify their position within 1000 feet of

actual along and across track position using Loran C.
• Brakes shall function smoothly and stop the train in a

safe distance.
• There shall be no hailstorms in the path of the aircraft.
• On most days, transmitter power output should be 100

watts.
• Go fast.
• Item shall work well and last a long time.
• Any favorites from your past?

c JOG System Engineering, Inc.A-1-14
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Specifications
Are Full of Sentences

THESE SENTENCES SHOULD BE WRITTEN IN THE
SIMPLEST POSSIBLE WAY

THE SUBJECT IS THE ITEM CHARACTERISTIC ABOUT
WHICH THE REQUIREMENT IS WRITTEN

VERB SHALL CLEARLY CALLS FOR COMPLIANCE

SUBJECT VERB OBJECT

Item memory margin shall be greater than 100%.

RELATION VALUE

8A2-1-

c JOG System Engineering, Inc.A-1-15
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Verb

• SHALL Mandatory

• WILL Contractor intends to perform

• SHOULD Recommended, Desirable

c JOG System Engineering, Inc.A-1-16
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Subject

• Writing requirements is easy

• The difficult job is knowing what to write them
about - the subject of the sentence

• That is why we model the problem space

9A2-1-

c JOG System Engineering, Inc.A-1-17
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Good Examples In Primitive Form

weight < 240 pounds

range > 5,000 nautical miles

MTBF > 10,000 hours

c JOG System Engineering, Inc.A-1-18
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

STRUCTURED
DECOMPOSITION

ARCHITECTURE
SYNTHESIS

ITEM
IDENTREQUIREMENTS

ANALYSIS

FREESTYLE IS FOR
EXPERTS AND

FOOLS

FREESTYLE

Requirements Analysis Strategies

COOLING
SYSTEM

VALVE X VALVE Y

POWER
GENERATING
SYSTEM

POWER
PLANT

COMPONENT
STANDARD

STANDARD

LIKE
ITEMPARENT ITEM

(FLOWDOWN)

CLONING

CUSTOMER Q&A
(ELICITATION)

MODELING

10A2-1-

c JOG System Engineering, Inc.A-1-19
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

A Foolproof Search For Subjects

STRUCTURED
MODELING

TOOLS
ITEM

SPECIFICATION

PRIMITIVE
LIST

LANGUAGE,
STYLE,
FORMAT

DID

SPECIFICATION
TEMPLATE

SYSTEM
DEFINITION
DOCUMENT

MODELS

ESSENTIAL
CHARACTERISTICS

c JOG System Engineering, Inc.A-1-20
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

General Program Task-
Resource Relationships

PROGRAM
PROCESS

TASK

PRACTICES

TEMPLATES/
DIDs

CONTINUOUS
IMPROVEMENT

PROCESS

COMMON
PROCESS
MERTICS

RESOURCES

TOOLS

PROGRAM
PLANS

RESIDUAL
MATERIALS

PROGRAM
MANAGEMENT

DATA

PROGRAM
MGMT

METRICS

PROGRAM
MANAGEMENT

SKILL

FUNCTIONAL
MGMT
SKILL

QUALIFIED
PEOPLE

PEOPLE
WITH

EXPERIENCE

WORK
PRODUCT

AUDIT

DISPOSAL

PRODUCT

MATERIAL

TASK
CONTROLS

AND

EXTERNAL
STANDARDS

TRAINING

TASK
CONTROLS

TYPICAL DID-TEMPLATE-WORK PRODUCT CHANNEL

PROGRAM
PROCESS

FUNCTIONAL
DEPARTMENT

PROCESS

CUSTOMER
NEEDS

11A2-1-

c JOG System Engineering, Inc.A-1-21
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Work Product Development Suite
Specification Case

TEMPLATE

TEMPLATE

TEMPLATE DID

PREFERRED
MODELS

VIA RAS
AND

DATABASE

c JOG System Engineering, Inc.A-1-22
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Document Progressions

SYSTEM
SPECIFICATIONSYSTEM

SPECIFICATION
TEMPLATE

SYSTEM
SPECIFICATION

DID USING
TSA

EXHIBIT B-1

HARDWARE ITEM
PERFORMANCE
SPECIFICATION

HARDWARE ITEM
PERFORMANCE
SPECIFICATION

TEMPLATE

HARDWARE ITEM
PERFORMANCE
SPECIFICATION

DID USING
TSA

EXHIBIT B-2

TAILORED
MIL-STD-961E

TSA

TSA

TAILORED
MIL-STD-961E

12A2-1-

c JOG System Engineering, Inc.A-1-23
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Document Progressions

SOFTWARE ITEM
SOFTWARE

REQUIREMENTS
SPECIFICATION

SOFTWARE ITEM
SOFTWARE

REQUIREMENTS
SPECIFICATION

TTEMPLATE

EXHIBIT B-3

SOFTWARE ITEM
SOFTWARE

REQUIREMENTS
SPECIFICATION

DID USING
UML

TAILORED
EIA J STD 016

UML

c JOG System Engineering, Inc.A-1-24
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

System Development Process Overview

Covered in this tutorial

13A2-1-

c JOG System Engineering, Inc.A-1-25
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Preparatory Steps

c JOG System Engineering, Inc.A-1-26
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

A Single Model Will Not Work

Hardware Content

Software Content

System
Elements

14A2-1-

c JOG System Engineering, Inc.A-1-27
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Hardware and Systems Analysis
Models

Traditional structured analysis
Functional analysis

Functional flow diagramming
Enhanced functional flow diagramming (CORE)
Behavioral diagramming (RDD/IPO)
IDEF 0 (SADT)
Process flow analysis
Hierarchical functional analysis

Constraints analysis
State diagramming
SysML

c JOG System Engineering, Inc.A-1-28
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Computer Software Structured
Analysis Models

• Process-oriented analysis
• Flow charting
• Modern Structured Analysis (Yourdon-Demarco)
• Modern Structured Analysis (Hatley-Pirbhai)

• Data-oriented analysis
• Table normalizing
• IDEF-1X

• Object-oriented analysis
– Early models

– Unified Modeling Language (UML)

• DoD architecture framework (DoDAF)

15A2-1-

c JOG System Engineering, Inc.A-1-29
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Structured View of a Problem Space

PROBLEM
SPACE

ANALYST

FUNCTIONAL
FACET

OBJECT
FACET

BEHAVIORAL
FACET

VISION

c JOG System Engineering, Inc.A-1-30
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Structured Analysis Methods
Comparison

MULTI-FACETED
APPROACHES

TRADITIONAL
STRUCTURED
ANALYSIS

MODERN
STRUCTURED
ANALYSIS

EARLY
OBJECT-ORIENTED
ANALYSIS

UML

PRODUCT ENTITY
FACET

PRODUCT ENTITY
BLOCK
DIAGRAM

HIERARCHICAL
DIAGRAM

CLASS AND
OBJECT DIAGRAM

CLASS/OBJECT ,
COMPONENT, &
DEPLOYMENT
DIAGRAMS

FUNCTIONAL
FACET

FUNCTIONAL
FLOW
DIAGRAM

DATA FLOW
DIAGRAM

DATA FLOW
DIAGRAM

USE CASES AND
ACTIVITY
DIAGRAMS

BEHAVIOR
FACET

SCHEMATIC
BLOCK
DIAGRAM

P SPEC, STATE
DIAGRAM

STATE
DIAGRAM

STATE,
SEQUENCE, AND
COMMUNICATION
DIAGRAMS

UNPRECEDENTED ANALYTICAL ENTRY FACET

16A2-1-

c JOG System Engineering, Inc.A-1-31
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Model Suggestions for Today

SPECIFICATION TYPE MODEL SUGGESTED

System Specification Traditional Structured Analysis
Hardware Performance Specification Traditional Structured Analysis
Software Performance Specification, General Unified Modeling Language (UML)
Software Performance Specification, Database IDEF-1X
Software Performance Specification, DoD IS DoDAF

But, be prepared to move to the use of SysML coupled with UML
and the eventual merge of the two into a more fully integrated
common modeling method.

c JOG System Engineering, Inc.A-1-32
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Preparatory Steps

17A2-1-

c JOG System Engineering, Inc.A-1-33
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Enabling Documentation

c JOG System Engineering, Inc.A-1-34
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Preparatory Steps

18A2-1-

c JOG System Engineering, Inc.A-1-35
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

MIL-STD-961E Template
1
2
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18

Scope
Applicable Documents
Requirements
Functional and Performance Rqmts.
Missions
Threat
Required States and Modes
Entity Capability Requirements
Reliability
Maintainability
Deployability
Availability
Environmental Conditions
Transportability
Materials and Processes
Electromagnetic Radiation
Nameplates and Product Markings
Producibility
Interchangeability
Safety
Human Factors Engineering
Security and Privacy

Computer Resource Requirements
Logistics
Personnel and Training
Requirements Traceability
Interface Requirements
GFP Interfaces
External Interface Requirements
Design and Construction
Production Drawings
Software Design
Workmanship
Standards of Manufacture
Process Definition
Material Definition
Precedence and Criticality of Rqmts.
Verification
Methods of Verification
Classes of Verification
Inspections
Packaging
Notes

3.1.19
3.1.20
3.1.21
3.1.22
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
4
4.1
4.2
4.3
5
6

c JOG System Engineering, Inc.A-1-36
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Recommended Template With Map for
Traditional Structured Analysis

PARA TITLE MODEL DEPT APP
------------ --- ---------------------------- ------- ---------
1. SCOPE DID 2100
2. APPLICABLE DOCUMENTS DID 2100
3. REQUIREMENTS DID 2100
3.1 Functional and performance requirements DID 2100
3.1.1 Missions Mission Analysis 2100
3.1.2 Threat Threat Analysis 2100
3.1.3 Required states and modes DID 2100
3.1.3.1 Functional analysis DID 2100 A
3.1.3.2 Subordinate entities DID 2100 C
3.1.3.3 Interface relationships DID 2100 D
3.1.3.4 Specialty engineering requirements DID 2100 E
3.1.3.5 Environmental model DID 2100 B
3.2 Entity capability requirements Functional Analysis 2100 A
3.2.m Capability m Functional Analysis 2100 A
3.2.m.n Capability m, requirement n Functional Analysis 2100 A
3.3 Interface requirements N-Square Diagram 2100 D
3.3.1 External interface requirements N-Square Diagram 2100 D
3.3.1.m External interface m N-Square Diagram 2100 D
3.3.1.m.n External interface m, requirement n N-Square Diagram 2100 D
3.3.2 Internal interface requirements N-Square Diagram 2100 D
3.3.2.m Internal interface m N-Square Diagram 2100 D
3.3.2.m.n Internal Interface m, requirement n N-Square Diagram 2100 D

Modeling
Methods Map

19A2-1-

c JOG System Engineering, Inc.A-1-37
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Recommended Template With Map for
Traditional Structured Analysis

PARA TITLE MODEL DEPT APP
------------ --- ---------------------------- ------- ---------
1. SCOPE DID 2100
2. APPLICABLE DOCUMENTS DID 2100
3. REQUIREMENTS DID 2100
3.1 Functional and performance requirements DID 2100
3.1.1 Missions Mission Analysis 2100
3.1.2 Threat Threat Analysis 2100
3.1.3 Required states and modes DID 2100
3.1.3.1 Functional analysis DID 2100 A
3.1.3.2 Subordinate entities DID 2100 C
3.1.3.3 Interface relationships DID 2100 D
3.1.3.4 Specialty engineering requirements DID 2100 E
3.1.3.5 Environmental model DID 2100 B
3.2 Entity capability requirements Functional Analysis 2100 A
3.2.m Capability m Functional Analysis 2100 A
3.2.m.n Capability m, requirement n Functional Analysis 2100 A
3.3 Interface requirements N-Square Diagram 2100 D
3.3.1 External interface requirements N-Square Diagram 2100 D
3.3.1.m External interface m N-Square Diagram 2100 D
3.3.1.m.n External interface m, requirement n N-Square Diagram 2100 D
3.3.2 Internal interface requirements N-Square Diagram 2100 D
3.3.2.m Internal interface m N-Square Diagram 2100 D
3.3.2.m.n Internal Interface m, requirement n N-Square Diagram 2100 D

Modeling
Methods Map

Functional
Department
Map

c JOG System Engineering, Inc.A-1-38
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Recommended Template With Map for
Traditional Structured Analysis

PARA TITLE MODEL DEPT APP
------------ --- ---------------------------- ------- ---------
1. SCOPE DID 2100
2. APPLICABLE DOCUMENTS DID 2100
3. REQUIREMENTS DID 2100
3.1 Functional and performance requirements DID 2100
3.1.1 Missions Mission Analysis 2100
3.1.2 Threat Threat Analysis 2100
3.1.3 Required states and modes DID 2100
3.1.3.1 Functional analysis DID 2100 A
3.1.3.2 Subordinate entities DID 2100 C
3.1.3.3 Interface relationships DID 2100 D
3.1.3.4 Specialty engineering requirements DID 2100 E
3.1.3.5 Environmental model DID 2100 B
3.2 Entity capability requirements Functional Analysis 2100 A
3.2.m Capability m Functional Analysis 2100 A
3.2.m.n Capability m, requirement n Functional Analysis 2100 A
3.3 Interface requirements N-Square Diagram 2100 D
3.3.1 External interface requirements N-Square Diagram 2100 D
3.3.1.m External interface m N-Square Diagram 2100 D
3.3.1.m.n External interface m, requirement n N-Square Diagram 2100 D
3.3.2 Internal interface requirements N-Square Diagram 2100 D
3.3.2.m Internal interface m N-Square Diagram 2100 D
3.3.2.m.n Internal Interface m, requirement n N-Square Diagram 2100 D

Modeling
Methods Map

Functional
Department
Map

Model Artifact
Capture
Map

20A2-1-

c JOG System Engineering, Inc.A-1-39
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Prepare and Maintain DIDs

• The DID follows the template format

• The recommended DID is focused on a particular
modeling approach

• The DID tells how to create a specification using
that template with a particular modeling approach

Document

Here is a sample DID for
a system specification
using TSA.

c JOG System Engineering, Inc.A-1-40
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Preparatory Steps

21A2-1-

c JOG System Engineering, Inc.A-1-41
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Generic Specialty Engineering Scoping
Matrix

SPECIALTY DISCIPLINE DEPT PARA A A1 A2 A3 A4
--- ---------- ------------ -------- -------- -------- -------- -------
H1 Reliability D2164 3.4.1
H2 Maintainability D2164 3.4.2
H3 Availability D2164 3.4.3
H4 Deployability and transportability D2164 3.4.4
H5 Logistics D2311 3.4.5
H6 Maintenance D2311 3.4.5.1
H7 Interchangeability D2113 3.4.5.2
H8 Supply D2311 3.4.5.3
H9 Facilities and facility equipment D2311 3.4.5.4
HA Personnel D2313 3.4.5.5
HB Training D2313 3.4.5.6
HC Safety D2165 3.4.6
HD Human factors engineering D2165 3.4.7
HE Security and privacy 3.4.8
HF Electromagnetic compatibility D2136 3.4.9
HG Lightning protection D2136 3.4.10
HH Producibility 3.4.11
HI Affordability D2168 3.4.12
HJ Computer resource requirements 3.4.13
- Design and construction 3.4.14
HK Quality Engineering D5100 3.4.14.1
HL Parts, materials, and processes D2167 3.4.14.2

c JOG System Engineering, Inc.A-1-42
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Generic Specialty Engineering Scoping
Matrix

SPECIALTY DISCIPLINE DEPT PARA A A1 A2 A3 A4
--- --------- ------------ -------- -------- -------- -------- --------
HM Workmanship D5100 3.4.14.3
HN Nameplates and product markings D2113 3.4.14.4
HO Serialization D2113 3.4.14.5
HP Mass properties D2124 3.4.14.6
HQ Structural properties D2124 3.4.14.7
HR Shock and vibration 3.4.14.8
HS Earthquake survivability D2123 3.4.14.9
HT Aerodynamics D2144 3.4.14.10
HU Thermodynamics D2143 3.4.14.11
HV Chemical, electrical, and mechanical 3.4.14.12

properties
HW Stability 3.4.14.13
HX Coatings and Corrosion Control D2167 3.4.14.14

22A2-1-

c JOG System Engineering, Inc.A-1-43
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Proposal Team Specification Actions

PERFORM INITIAL
SYSTEM ANALYSIS

3.2

PIT

CUSTOMER
REQUIREMENTS

ESTABLISH
PRODUCT

ARCHITECTURE
AND OVERLAYS

3.4

PIT

DEVELOP SYSTEM
CONCEPT

ACCOMPLISH
FINANCE

PLANNING

PBT

3.4

PIT

SELECT TEMPLATES
AND DIDS COORDIN-
ATED WITH NEEDED

SPECIFICATIONS

3.5

SDD DID

CAPTURE RESULTS
OF STRUCTURED
ANALYSIS IN SDD

3.7

PIT

PIT

ACCOMPLISH
LIMITED SYSTEM

PRE-DESIGN ENGINEERING DATA
FOR PROPOSAL

COST ESTIMATE
AND TEAM
ORIENTED
BUDGET

PIT

MAP SPECIALTY
DISCIPLINES TO
ARCHITECTURE

PRELIMINARY
SDD

GENERIC
SPECIALTY

ENGINEERING
SCOPING
MATRIX

DERIVE
REQUIREMENTS
FROM MODELS

POPULATE RAS
WITH REQUIREMENTS

PREFERRED
REQUIREMENTS

DATABASE

PREPARE
DATABASE FOR

PROGRAM
APPLICATION

REVIEW AND
APPROVE

SPECIFICATIONS

SPECIFICATIONS

PROPOSAL TEAM WORK

PIT

PIT
PIT

PIT

PROPOSAL MANAGER

REVIEW AND
APPROVE DESIGN

CONCEPTS

PROPOSAL MANAGER

REVIEW AND
APPROVE COST
ESTIMATES AND

PLANNED BUDGETS

PROPOSAL MANAGER

TEAMS

3.5

3.8

3.3

3.6

SYSTEM
ENVIRONMENTAL
REQUIREMENTS

ANALYSIS

PIT

3.2

3.4

MODELING
FEEDBACK

c JOG System Engineering, Inc.A-1-44
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Environmental Requirements

• System
– Identify spaces within which the system will have to function

– Select standards covering those spaces

– For each standard, select parameters that apply

– Tailor the range of selected parameters

• End item
– Build three dimensional model of end items, physical

processes, and process environments

– Extract item environments

• Component
– Zone end item into spaces of common environmental

characteristics

– Map components to zones

– Components inherit zone environmental requirements

23A2-1-

c JOG System Engineering, Inc.A-1-45
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

2.1

1.1 1.2 1.3 1.4

2.2

2.3

3.1

3.2

4.1

4.2

5.1

5.2

5.3

6.1

H71

1.5
H21

A11 A12 A13 A14

H22

H23

H31

H32

H41

H51

H52

H53

H61

H71

A15

X X X

X

X

XXX

X X X
X X

X

X

XX
X

X

X X

X X

X

X
X

X

X

XXX

X X

X X X X

X XX

X

X

X

SPECIALTY ENGINEERING SCOPING
MATRIX

REQUIREMENTS ANALYSIS SHEET
(IN A COMPUTER DATABASE)

H42 A11

H42 A12

H42 A13

2.52.4

H42 A21

CONSTRAINT

H42 XX

X

 PID

C
O
N
S
T
R
A
I
N
T
S

PRODUCT ID (PID)

X

Specialty Engineering Scoping Matrix
Applied to Program

Specialty
Engineering
Requirement

c JOG System Engineering, Inc.A-1-46
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Configuration Control the Models
DOCUMENT BODY

APPENDIX A, SYSTEM FUNCTIONALITY

APPENDIX B, SYSTEM ENVINROMENT

APPENDIX C, PRODUCT ENTITY

APPENDIX D, INTERFACE

APPENDIX E, SPECIALTY ENGINEERING

APPENDIX F, PROCESS

 APPENDIX G, RAS

APPENDIX H, MANPOWER

System
Definition
Document

24A2-1-

c JOG System Engineering, Inc.A-1-47
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

On To Program Work

1A-2-

c JOG System Engineering, Inc.A-2-12R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

TRADITIONAL STRUCTURED
ANALYSIS

JOG SYSTEM ENGINEERING, INC.
GRAND SYSTEMS DEVELOPMENT

TUTORIAL PROGRAM

AN EFFECIVE SPECIFICATION DEVELOPMENT
ALGORITHM TUTORIAL

VERSION 10.1

c JOG System Engineering, Inc.A-2-22R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Big Bang Theory Of
System Development

CUSTOMER
NEED

BA-BA-BA-BANG

EVERYTHING FLOWS FROM ONE IDEA,

IT IS THE ULTIMATE REQUIREMENT,
THE ULTIMATE FUNCTION

THE

THE TRADITIONAL APPROACH

2A-2-

c JOG System Engineering, Inc.A-2-32R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Two Top-Level Views of a System

ENVIRONMENT SYSTEM
I2

I1

AQ

SYSTEM

TERMINATOR 1

TERMINATOR 2

TERMINATOR 3
TERMINATOR 4

TERMINATOR 5

TERMINATOR 6

TRADITIONAL
STRUCTURED

ANALYSIS (TSA)

BORROWED
FROM MODERN
STRUCTURED

ANALYSIS (MSA)

c JOG System Engineering, Inc.A-2-42R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Beginning Of
Functional Decomposition

SYSTEM
NEED

STATEMENT
SYSTEM

MINDLESS
ALLOCATION

FUNCTIONAL
DECOMPOSITION

SYSTEM
ARCHITECTURE

DEFINITION

CONTINUING
FUNCTION

ALLOCATION

ENVIRONMENT

3A-2-

c JOG System Engineering, Inc.A-2-52R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Traditional Structured Analysis Model
Overview

NEED

Functional Flow Diagram

Decomposition

1 Understand User Requirements

2

3

8

6

Product
Entity

Structure

7

N-Square
Diagram

4 Performance
Requirements

Analysis

Interface
Requirements

Three Layerd
Environmental
Requirements

Analysis

Environmental
Requirements

Specialty
Engineering

Requirements
Analysis

Specailty
Engineering

Requirements

10

Specifications

Cycle to
Lower
Tiers11 5 Requirements Analysis Sheet

Requirement Allocation9

c JOG System Engineering, Inc.A-2-62R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Ultimate Function and Its First
Expansion

F1 F2 F3 F4

F

NEED
STATEMENT

First Expansion is a Life-Cycle Flow Diagram

Alternative functional analysis techniques

Enhanced functional flow block diagramming (CORE)
Behavioral diagramming (RDD)
IDEF-0

4A-2-

c JOG System Engineering, Inc.A-2-72R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

F41 F42 F44

GRAND
SYSTEMS

SUSTAINMENT

USE
SYSTEM

F47

F48 DISPOSED
SYSTEM

SUPPLIER
MATERIAL

SUPPLIER
CONTROL

25

F

F4
LESSONS
LEARNED

NEW
PROGRAM

PROGRAM
RESOURCES

22

X

X: REFER TO PROGRAM SYSTEM DEFINITION DOCUMENT FOR EXPANSION

2 2

MANAGE
CUSTOMER
ACTIVITIES

F5

2

ENTERPRISE
VISION

CUSTOMER
NEEED

FF

NEED

SUPPLIER
FUNCTIONS

F6

GRAND
SYSTEMS

REQUIREMENTS

GRAND
SYSTEMS

SYNTHESIS

GRAND
SYSTEMS

VERIFICATION

ENTERPRISE
SCOPE

GRAND SYSTEMS
DEVELOPMENT

OVERLAY

GRAND SYSTEMS
EMPLOYMENT

OVERLAY

SYSTEM/PROGRAM LIFE CYCLE OVERLAY

ACQUIRE NEW
BUSINESS

F3

PROVIDE PROGRAM
RESOURCES

35
F2

47

GRAND SYSTEMS MANAGEMENT OVERLAY

F49

MANAGE ENTERPRISE
F1

MANAGE
PROGRAM

9 F46

ASSURE
PRODUCT

AND PROCESS
QUALITY

GRAND SYSTEMS
UNIVERSE

Example of a Life Cycle Model

c JOG System Engineering, Inc.A-2-82R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Use System Expansion Example
Space Transport System

PROCESS
LAUNCH
VEHICLE

F471

RECEIVE
LAUNCH
VEHICLE

STORE
LAUNCH
VEHICLE

F472

F473

IOR AND

REFURBISH
LAUNCH PAD

MAINTAIN PAD
READINESS

PROCESS
UPPER
STAGEIOR

IOR

PROCESS
PAYLOAD
FAIRING

PROCESS
SOLID

ROCKETS

IOR

INSTALL
SOLID

ROCKETS

INTEGRATE
UPPER
STAGE

PAYLOAD

INTEGRATE
PAYLOAD

INTEGRATE
PAYLOAD
FAIRING

PLAN
TRANSPORT

MISSION

MISSION
DATA

PREPARE
VEHICLE FOR

LAUNCH

MAINTAIN
READINESS

IOR

EXECUTE
LAUNCH

OPERATIONS

LAUNCH
ABORT

OPERATIONS

FLIGHT
OPERATIONS IOR

DISPOSE
OF SOLIDS

DISPOSE OF
LAUNCH
VEHICLE

DISPOSE OF
FAIRING

UPPER
STAGE

FLT OPS
SEPARATE
PAYLOAD

PAYLOAD
OPERATIONS

DISPOSE OF
UPPER
STAGE

DESTRUCT
LAUNCH
VEHICLE

USE
SYSTEM

F47

F475

F474

F476

F477

F478 F479 F47A

F47B

F47C

F47D

F47E

F47F

F47G

F47H4

F47H1

F47H2

F47H3 F47I F47J

F47H5

F47M

MANAGE
OPERATIONS

F47N

SITE
LOGISTICS

F47P

F47Q

1

VACATE
PAD

F47K

F47LF47R

OPERATIONAL
DISPOSAL

F47H

IOR

RECYCLE
DESTACKED
END ITEMS

STORE AND
PROCESS
PAYLOAD

IOR

LAUNCH
VEHICLE

TRANSPORT
END ITEMS

F47S

5A-2-

c JOG System Engineering, Inc.A-2-92R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Continued Function Decomposition

F@

F@1 F@2 F@3 F@4

An orderly exposure of needed functionality moving from the known to
the unknown, from simple to the complex, from the top to the bottom.

Base 60 or decimal delimited ID

c JOG System Engineering, Inc.A-2-102R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Performance Requirements Analysis
and the RAS

Exposing what the system must do and how well it must do it
encouraging identification of all essential characteristics and avoidance

of unnecessary characteristics.

6A-2-

c JOG System Engineering, Inc.A-2-112R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Function-Product Entity Plane

Function-
Product Entity

Matrix

Product Entity
Axis

Function
Axis

Performance
Requirements

c JOG System Engineering, Inc.A-2-122R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Functional Analysis Alternatives

• IDEF 0
– A variation on SADT

• Behavioral Diagramming
– From Ascent Logic’s RDD

– Based on IPO

• Enhanced Functional Flow Block Diagramming
– Employed in Vitech’s CORE

• Hierarchical Functional Block Diagramming

7A-2-

c JOG System Engineering, Inc.A-2-132R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Requirements Capture Using
the RAS-Complete Format

Here Is What
We Want

This Is How To Get It

ENVIRONMENTAL
REQUIREMENTS

ANALYSIS

c JOG System Engineering, Inc.A-2-142R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Product Entity Structure

SYSTEM

A

A15A12A11I A14A13

A3A2 A1

Use a common structure that
includes hardware and software.TSA

UML

8A-2-

c JOG System Engineering, Inc.A-2-152R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Systems Consist of Things and
Relationships

A

A1 A2 A3

A21 A22 A23

A1

A3

A21

A22

A23

A

A2

Q
System Environment

Product Entity Structure Diagram

System Relationships Block Diagram

c JOG System Engineering, Inc.A-2-162R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Organizing For
Interface Development

• Decompose needed functionality and allocate to product entities
• Map product entities to responsible development organizations

– Create cross-functional integrated product and process teams (IPPT)
– Assign principal engineers for lowest tier responsibilities on teams (everything has someone

responsible)
• Establish clear rules for interface development responsibility

– Identify needed interfaces as a function of how functionality was allocated to entities
– Analyze product entity pair relationships using n-square diagrams
– Partition interface into subsets as a function of product entity principal views
– Assign interface responsibility to product entity principal engineers as a function of a

receiving terminal rule (if you need an interface you must come forward)
– System engineering manage the aggregate external and inter-team interface sets applying a

lowest common team integration concept
• Minimize external (cross-organizational) interface at all levels, iterating

product entity structure and/or development organization responsibilities
to do so, if necessary, then apply system engineering integration
resources to that which remains

9A-2-

c JOG System Engineering, Inc.A-2-172R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Two Interface Definition Models

SCHEMATIC BLOCK DIAGRAMMING

N-SQUARE DIAGRAMMING

• Lines define interfaces
• Blocks are objects only

from the product entity
structure

• Marked intersections define interfaces
• Diagonal blocks are objects only from

product entity block diagram
• Apparent ambiguity reflects

directionality

X X

X

X

X

X

A1

A2

A4

A3

A5

A1
A2

A3
A4

A5

A6

A6

X

X

X
X

X

X

c JOG System Engineering, Inc.A-2-182R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Interface Requirements Derivation
Geometrical View

Function-
Product Entity

Matrix

Product Entity
Axis

Function
Axis

Performance
Requirements

10A-2-

c JOG System Engineering, Inc.A-2-192R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Development Often Fails at the
Cross-organizational Interfaces

XYZ
PROGRAM

ORGANIZATION

 SYSTEM XYZ
COLLABORATION DIAGRAM

A1

A2

A3

A4

RESPONSIBILITY MAP

c JOG System Engineering, Inc.A-2-202R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Interface Integration Focus

DOMAIN
X

DOMAIN
Y

DOMAIN OF THE
SYSTEM ENGINEER

INTEGRATION
ELEMENT Xi

INTEGRATION
ELEMENT Yi

KNOWLEDGE
PRODUCT FUNCTIONS

PRODUCT OBJECTS
TEAM PERSPECTIVES

DOMAINS OF INTEREST

11A-2-

c JOG System Engineering, Inc.A-2-212R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Fundamental Problems in Interface
Work

COMPONENT
X

COMPONENT
Y

There is a one-to-one correspondence between teams
and components. There is a one- to-two correspond-
ence between teams and interfaces.

c JOG System Engineering, Inc.A-2-222R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Fundamental Problems in Interface
Work

COMPONENT
X

COMPONENT
Y

We tend to focus inwardly

12A-2-

c JOG System Engineering, Inc.A-2-232R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Fundamental Problems in Interface
Work

COMPONENT
X

COMPONENT
Y

We are dependent on the worst interface on
planet Earth in the development of interfaces.

HUMAN
COMMUNICATIONS!!

c JOG System Engineering, Inc.A-2-242R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Benefits Of Product Team Organization

SEGMENT
1

SEGMENT
2

SEGMENT
3

SEGMENT
4

IPT
1

IPT
2

IPT
3

IPT
4

PRODUCT N-SQUARE DIAGRAM

ORGANIZATION N-SQUARE DIAGRAM

Cross-
Organizational
Interface
Requirement

Inter-team
Communication
Requirement

Interface
Control
Working
Teams

Component
Teams

WBS, SOW, IMP, IMS
Budget and schedule
Specifications

13A-2-

c JOG System Engineering, Inc.A-2-252R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

SYSTEM
IPPT

SEGMENT 3
IPPT

SEGMENT 2
IPPT

SEGMENT 1
ELEMENT 1

IPPT

SEGMENT 1
ELEMENT 2

IPPT

SEGMENT1
ELEMENT 3

IPPT

SEGMENT 2
ELEMENT 1

IPPT

SEGMENT 2
ELEMENT 2

IPPT

SEGMENT 2
ELEMENT 3

IPPT

SEGMENT 3
ELEMENT 1

IPPT

SEGMENT 3
ELEMENT 2

IPPT

SEGMENT 3
ELEMENT 3

IPPT

Product Entity and Interface
Responsibility

Higher Tier
ICWG

MembershipICWT

ICWT

SEGMENT 1
IPPT

FEDERATED
ICWT

c JOG System Engineering, Inc.A-2-262R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Lowest Common Team Concept

Q
T

S
E

C

E

C

C

C

S
E

C

E

C

C

C

I

I

I

I

ALL EXTERNAL INTERFACEALL INTERNAL INTERFACE

E
X

T
E

R
N

A
L

E
N

T
IT

IE
S

I

I

I

I

I

I

I

I

I

I

I

I

3

5

18

16

19

6

4

7

8

10

15

2

12

13

9

14

1

11

17

20

T Total System
S Segment
E Element
C Component
I Item
Q Environment

14A-2-

c JOG System Engineering, Inc.A-2-272R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

2.1

1.1 1.2 1.3 1.4

2.2

2.3

3.1

3.2

4.1

4.2

5.1

5.2

5.3

6.1

HD

1.5
H1

A11 A12 A13 A14

H2

H3

H4

H5

H6

H8

H9

HA

HB

HD

A15

X X X

X

X

XXX

X X X
X X

X

X

XX
X

X

X X

X X

X

X
X

X

X

XXX

X X

X X X X

X XX

X

X

X

SPECIALTY ENGINEERING
CONSTRAINTS MATRIX

SPECIALTY ENGINEERING REQUIREMENTS
FLOW INTO THE INDICATED SPECIFICATIONS
VIA THE RAS IMPLEMENTED IN A DATABASE

H7 A11

H7 A12

H7 A13

A25A24

H7 A21

CONSTRAINT

H7 XX

X

PID

C
O
N
S
T
R
A
I
N
T
S

PRODUCT ENTITY (PID)

X

Specialty Engineering Identification
of Constraints

SDD APPENDIX E

c JOG System Engineering, Inc.A-2-282R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Specialty Engineering Plane Added

PRODUCT ENTITY-
SPECIALTY ENG

MATRIX

FUNCTION-
PRODUCT ENTITY-

MATRIX

PRODUCT ENTITY
AXIS

H7

SPECIALTY
ENGINEERING
REQUIREMENT

15A-2-

c JOG System Engineering, Inc.A-2-292R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Environment Subsets

SYSTEM
ENVIRONMENT

Q

SPACE

TIME

NATURAL
ENVIORNMENTAL

STRESSES

QN

NATURAL
ENVIRONMENT

QN1

QN2

QN3

NON-COOPERATIVE
ENVIRONMENT

HOSTILE
ENVIRONMENT

QX QH

SELF INDUCED
ENVIRONMENTAL

STRESSES

QI

COOPERATIVE
SYSTEMS

ENVIRONMENT

QC

TREATED AS
SYSTEM

ENVIRONMENT

TREATED AS
AN EXERNAL
INTERFACE

c JOG System Engineering, Inc.A-2-302R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Environmental Requirements
• System

– Identify spaces within which the system will have to function

– Select standards covering those spaces

– For each standard, select parameters that apply

– Tailor the range of selected parameters

• End item
– Build three dimensional model of end items, physical

processes, and process environments

– Extract item environmental requirements

• Component
– Zone end item into spaces of common environmental

characteristics

– Map components to zones

– Components inherit zone environmental requirements

16A-2-

c JOG System Engineering, Inc.A-2-312R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Environmental Planes Added

PRODUCT ENTITY-
SPECIALTY ENG

MATRIX

FUNCTION-
PRODUCT ENTITY-

MATRIX

PRODUCT ENTITY
AXIS

PRODUCT ENTITY-
ENVIRONMENT

MATRIX

H7

COOPERATIVE
ENVIRONMENT

AXIS

PRODUCT ENTITY-
PROCESS
MATRIX

c JOG System Engineering, Inc.A-2-322R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

RAS Complete In Tabular Form

MODEL ENTITY !REQUIREMENT ENTITY !PRODUCT ENTITY !DOCUMENT ENTITY
MID !MODEL ENTITY NAME !RID !REQUIREMENT !PID !ITEM NAME !PARA !TITLE
--------- !-- !---------- !-- !--------- !--------------------------------- !------------ !------------------------------
F47 !Use System ! ! !A !Product System !
F471 !Deployment Ship Operations ! ! !A !Product System
F4711 !Store Array Operationally !XR67 !Storage Volume < 10 ISO Vans !A1 !Sensor Subsystem !

H !Specialty Engineering Disciplines ! ! !A !Product System
H11 !Reliability !EW34 !Failure Rate < 10 x 10-6 !A1 !Sensor Subsystem !3.1.5 !Reliability
H11 !Reliability !RG31 !Failure Rate < 3 x 10-6 !A11 !Cable !3.1.5 !Reliability
H11 !Reliability !FYH4 !Failure Rate < 5 x 10-6 !A12 !Sensor Element !3.1.5 !Reliability
H11 !Reliability !G8R4 !Failure Rate < 2 x 10-6 !A13 !Pressure Vessel !3.1.5 !Reliability
H12 !Maintainability !6GHU Mean Time to Repair < 0.2 Hours !A1 !Sensor Subsystem !3.1.6 !Maintainability
H12 !Maintainability !U9R4 !Mean Time to Repair < 0.4 Hours !A11 !Cable !3.1.6 !Maintainability
H12 !Maintainability !J897 !Mean Time to Repair < 0.2 Hours !A12 !Sensor Element !3.1.6 !Maintainability
H12 !Maintainability !9D7H !Mean Time to Repair < 0.1 Hours !A13 !Pressure Vessel !3.1.6 !Maintainability

I !System Interface ! ! !A !Product System
I1 !Internal Interface ! ! !A !Product System
I11 !Sensor Subsystem Innerface ! ! !A1 !
I181 !Aggregate Signal Feed Source !E37H !Aggregate Signal Feed Source !A1 !Sensor Subsystem !

!Impedance ! !Impedance= 52 ohms + 2 ohms
I181 !Aggregate Signal Feed Load !E37I !Aggregate Signal Feed Load !A4 !Analysis and Reporting !

!Impedance ! !Impedance= 52 ohms + 2 ohms ! !Subsystem !
I2 !System External Interface ! ! !A !Product System

Q !System Environment ! ! !A !Product System
QH !Hostile Environment ! ! !A !Product System !
QI !Self-Induced Environmental ! ! !A !Product System

!Stresses
QN !Natural Environment ! ! !A !Product System
QN1 !Temperature !6D74 !-40 degrees F< Temperature !A !Product System !

! ! !< +140 degrees F
QX !Non-Cooperative Environmental ! ! !A !Product System

!Stresses

Performance
Requirements

Specialty
Engineering

Interface

Environmental

17A-2-

c JOG System Engineering, Inc.A-2-332R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

MAINTAIN
REQUIREMENTS

ANALYSIS
SHEET

(IN A
COMPUTER
DATABASE)

STATES AND
MODES

ANALYSIS

SELECT
TEMPLATE

SYNTHESIZE
ARCHITECTURE

DEFINE
SPECIALTY

ENGINEERING
REQUIREMENTS

NATURAL ENVIRONMENTAL
REQUIREMENTS ANALYSIS

PUBLISH
SPECIFICATIONS

DEFINE
INTERFACESIDENTIFY

INTERFACE

DEFINE
INTERFACE

MEDIA
TECHNOLOGY

IDENTUFY
SPECIALTY
ENGINERING

DOMAINS

IDENTIFY
SYSTEM
SPACES

SELECT
PARAMETERS
AND TAILOR

RANGE

PROCSSES
ANALYSIS

DEFINE
PROCSSES

ENVIRONMENT

MAP
ARCHITECTURE
TO PROCESSES

DEFINE
END ITEM

ZONES

MAP
COMPONENTS

TO ZONES

DEFINE
ZONE

ENVIRONMENTS

NEED

SPECIFICATIONS

REQUIREMENTS
ANALYSIS

DEVELOP
DESIGN

CONCEPTS

PROGRESSIVE FEEDBACK

MAP
DISCIPLINES TO
ARCHITECTURE

DEFINE
ENTITY

CAPABILITY
REQUIREMENTS

IDENTIFY
HOSTILE
THREATS

DEFINE
HOSTILE

ENVIRONMENTAL
REQUIREMENTS

IDENTIFY NON-
COOPERATIVE

ENVIRONMENTAL
STRESSES

DEFINE NON-
COOPERATIVE

ENVIRONMENTAL
REQUIREMENTS

IDENTIFY SELF-
INDUCED

ENVIRONMENTAL
STRESSES

DEFINE SELF-
INDICED

ENVIRONMENTAL
REQUIREMENTS

INTEGRATE
ENVIRONMENTAL
REQUIREMENTS

ENVIRONMENTAL
REQUIREMENTS

ANALYSIS

PERFORMANCE
REQUIREMENTS

ANALYSIS

INTERFACE
REQUIREMENTS

ANALYSIS

SPECIALTY
ENGINEERING

REQUIREMENTS
ANALYSIS

MISSION
ANALYSIS

JOG SYSTEM ENGINEERING 10-22-2004

Traditional Structured Analysis
Process View

Template/
DID

3.1

3.2

3.3

3.5

3.4

System
Definition
Document

Specification

Specification template
paragraph numbers in

red.

NOTE

c JOG System Engineering, Inc.A-2-342R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Save the Models!

18A-2-

1A-3-

c JOG System Engineering, Inc.A-3-12R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

UNIFIED MODELING
LANGUAGE

JOG SYSTEM ENGINEERING, INC.
GRAND SYSTEMS DEVELOPMENT

TUTORIAL PROGRAM

AN EFFECTIVE SPECIFICATION
DEVELOPMENT ALGORITHM TUTORIAL

VERSION 10.1

c JOG System Engineering, Inc.A-3-22R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Agenda

• The Dead Sea scrolls of software development

• UML modeling artifacts

• UML modeling approach

• Integration

• Requirements and modeling documentation

2A-3-

c JOG System Engineering, Inc.A-3-32R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Software Dead Sea Scrolls

• Flow chartings
– Functionality examined

– Data in the back seat

• SADT and IPO
– Two axis models

• Modern structured analysis and HP
– Functionality and data examined

• Early OOA
– Search for objects and their behavior

– Anti Sullivan

c JOG System Engineering, Inc.A-3-42R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

A Preferred Modeling Order

UNDERSTAND
CLASSIFIERS

FROM THE
BOTTOM-UP

DYNAMICALLY
MODEL

CLASSIFIERS

PACKAGE
CLASSIFIERS

FROM THE
BOTTOM-UP

Early object oriented analysis encouraged this pattern.

We will follow Sullivan’s encouragement in this tutorial - form follows function.

UML can support either direction.

DYNAMICALLY
MODEL THE
PROBLEM

SPACE FROM
THE TOP-DOWN

IDENTIFY
RESPONSIBLE
CLASSIFIERS

PACKAGE
CLASSIFIERS

FROM THE
TOP-DOWN

Note: A classifier is a general term for a software product
entity represented by a node, component, or class in UML.

3A-3-

c JOG System Engineering, Inc.A-3-52R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Software Development Process

• Identify a product entity that will be developed as computer
software.

• Dynamically analyze the entity.
– Use cases
– Sequence diagram
– Communication diagram
– activity diagram
– State diagram

• In the sequence, communication, and activity diagramming
analysis you will have to identify lower tier product entities.

• And the process continues to expand and move deeper
translating problem space into solution space.

• At the bottom are classes about which code can be written
based on requirements derived from the dynamic modeling
work.

c JOG System Engineering, Inc.A-3-62R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Consolidated System
Product Entity Structure

SoS

System

Element

Element

Element

Element

Element

Element

Element

Element

System System

A

A1 A2 A3 A4 A5

A31 A32 A33

A321

A322

A323

A324 A328

A327

A326

A325

Segment Segment Segment

System System

Element

A331

Element

A331

Element

A331

Element

A331

Software Entities

4A-3-

c JOG System Engineering, Inc.A-3-72R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Suggested SRS Structure

3 REQUIREMENTS

3.1 Required states and modes

3.2 Software entity capability requirements

3.2.m Software entity capability m

3.2.m.n Software entity capability m, requirement n

3.3 Software entity interface requirements

3.3.1 Software entity external interface requirements

3.3.1.m Specific external interface m

3.3.1.m.n External interface m, requirement n

3.3.2 Software entity internal interface requirements

3.3.2.m Specific internal interface m

3.3.2.m.n Internal interface m, requirement n

3.3.3 Software entity internal data requirements

3.3.3.n Specific software entity internal data requirement n

3.4 Specialty engineering requirements

3.5 Software entity environmental requirements

3.6 Precedence and criticality requirements

Requirements
Analysis

DocumentDID

c JOG System Engineering, Inc.A-3-82R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Diagrams of UML
• For modeling dynamic aspects of the system

– Use case diagram
– Sequence diagram
– Timing diagram
– Communication diagram (renamed in 2)
– State diagram
– Activity diagram
– Interaction overview diagram (2)

• For modeling static aspects of the system
– Object and class diagrams
– Component diagram
– Deployment diagram
– Composite structure diagram (2)
– Package diagram (2)

(2) = added in UML 2.0

Covered in
this tutorial

Classifiers

5A-3-

c JOG System Engineering, Inc.A-3-92R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Dynamic Models

1 2

34

CLASSIFIER
1

CLASSIFIER
2

CLASSIFIER
3

Sequence Diagram UX11321

Communication Diagram UX11322

Interaction Diagrams

Activity Diagram UX11323

State Diagram UX11324

5

6

ACTOR
1

CLASSIFIER
1

CLASSIFIER
2

7A

7B

8

c JOG System Engineering, Inc.A-3-102R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Sequence Diagram UX-11321
Emphasizes the time ordering of messages

It is understood that the classifiers are performing
operations, possibly modeled in activity or state

diagrams, relative to the message content.

Argument List

Actor

Time

a:Classifier AX1 b:Classifier AX2

messageOne() messageTwo()

messageFour()

messageFive()
message
Three()

Classifier AX

Lifeline active

6A-3-

c JOG System Engineering, Inc.A-3-112R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Messages Between Lifelines

• A message is the specification of a
communication among objects on a class or
object diagram or between the objects
represented by life lines on the sequence diagram
or blocks of a communication diagram.

• When a message is passed from one object to
another some action usually results on its receipt

• The action may result in a change of state in the
object on the arrow head.

• State related requirements in terms related to the
target object.

c JOG System Engineering, Inc.A-3-122R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Sequence Diagram Message Types

• Call
– Invokes an operation on an object represented by the lifeline
– An object can send a call to itself resulting in a local

invocation

• Return
– Returns a value to the caller

• Send
– Sends a signal to an object

• Create
– Creates an object

• Destroy
– Destroys an object

7A-3-

c JOG System Engineering, Inc.A-3-132R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

A Simple Example

VCSDRIVER

commandHeadlightsOn

operateHeadlightSwitchOn

LCS Light UnitSENSOR

headlightPower

senseDark

reportIllumination

indicateIllumination

External Lighting System

indicateIllumination

c JOG System Engineering, Inc.A-3-142R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Communication Diagram UX11322
Emphasizes structural relationships

Semantically identical to the sequence diagram.

Actor a:Classifier AX1 b:Classifier AX2

messageOne()
messageFive()

messageTwo()
messageFour()

messageThree()
1

2

3

4

5

8A-3-

c JOG System Engineering, Inc.A-3-152R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Activity Diagram UX11323

Activity one

Activity three Activity two

Activity fiveActivity four

Fork

Join

Initialization

Branch

Swimlane 1

Completion

Swimlane 2 Swimlane 3

Merge

[guard expression 1]

[guard expression 2]

c JOG System Engineering, Inc.A-3-162R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

State Diagram UX11324

Idle

Cool Heat
tooCool

tooHot

atTemp atTemp

tooHot tooCool

Transition

State

Initial State Final State

9A-3-

c JOG System Engineering, Inc.A-3-172R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The Static Entities in UML
• System/Subsystem

– The highest level software entity. There can be many of these entities
in a real system composed of hardware and distributed software. A
node or collection of collection of nodes.

• Node
– Appears on a deployment diagram that exists at run time and a

computational resource, generally having at least some memory and
often processing capability. A collection of components.

• Component
– A modular part of the system consisting of classes.

• Class
– A description of a set of objects that share the same attributes,

operations, relationships, and semantics.

• Object
– An instance of a class.

c JOG System Engineering, Inc.A-3-182R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

UML Structural Artifacts in a Product
Entity Structure

Node

Component

Class

Class

Class

Class

Class

Class

Component Component

Class

Class

Class

Top-Down
Development
Encouraged

Dynamic
Analysis

Lower Tier
Classifiers
Identified

10A-3-

c JOG System Engineering, Inc.A-3-192R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Deployment and Component Diagrams

CreditCardCharges ManagerInterface

TicketDBTicketSeller

ClerkInterface
CustomerInterface

Kiosk SalesTerminal

TicketServer

Customer
Clerk

CreditCardAgency Manager

Node

Component

c JOG System Engineering, Inc.A-3-202R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Classes and Objects

NameName

attributeOne
attributeTwo
attributeThree
attributeFour

operationOne()
operationTwo()
operationThree()

The name is a noun or noun phrase

An attribute is a named property of a class that
describes a range of values that instances of the
property may hold. An attribute represents some
property of the thing you are modeling that is
shared by all objects of that class.

An operation is the implementation of a service
that can be requested from any object of a class to
effect behavior. An operation is an abstraction of
something you can do to an object that is shared
by all objects of that class

A class is a description of a set of objects that share the same attributes,
operations, relationships, and semantics. An object is an instance of a
class. Graphically a class is rendered as a rectangle.

11A-3-

c JOG System Engineering, Inc.A-3-212R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Class Responsibilities

NameName

-- Responsibility
one

-- Responsibility
two

A responsibility is a contract or an obligation of a class.
You may find it useful to begin the analysis of classes
this way translating these into attributes and operations
that best fulfill the class’s responsibility as the model is
refined. The responsibility is noted in an added
compartment in which descriptive free form-text is
entered.

c JOG System Engineering, Inc.A-3-222R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Structural Relationships
These Have Nothing To Do With Messages

NameOne

NameTwo NameThree

generalization association

dependancy

NameFive

NameFour

NameOne depending on
NameFour for information and
services.

NameOne is the
base class.
NameTwo and
NameThree are
leaf classes in a
generalization.

An association is a structural relationship

12A-3-

c JOG System Engineering, Inc.A-3-232R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Structural Relationships
Association Adornments

NameOne NameTwo
Association name

name direction• Association Name

• Association Role

• Association Multiplicity

• Association Aggregation

Aggregation

Whole

Part

The face that the class at the far end of an
association presents to the class at near end of
the association. Role names called end names.

Tells how many objects may be connected
across an association instance. Given by a
range of numbers.

role role

x..y

Expresses a whole-part relationship between to
associated classes.

c JOG System Engineering, Inc.A-3-242R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

A Flexible Dynamic Modeling Overview

Specifications

13A-3-

c JOG System Engineering, Inc.A-3-252R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Organizing the Dynamic Modeling

• Use a context diagram to organize the use cases.

• Recognize a family of use cases if necessary.

• If use cases complex, recognize two or more scenarios for
each use case.

• For each scenario build a sequence diagram and in the
process identify next lower tier classifiers and messages
between the actors and lower tier classifiers.

• Apply communication, activity, and state diagrams as
needed.

• Derive requirements from dynamic modeling artifacts.

c JOG System Engineering, Inc.A-3-262R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Hierarchical Modeling Relationships
A top-level

software product
entity

EXTENDED
USE CASE hij

CLASSIFIER

USE
CASE hi

CONTEXT DIAGRAM
TERMINATOR h

STATE
DIAGRAM

SEQUENCE
DIAGRAM

ACTIVITY
DIAGRAM

COMMUNICATION
DIAGRAM

EXTENDED
USE CASE

EXTENDED
USE CASE

USE
CASE

USE
CASE

CONTEXT DIAGRAM
TERMINATOR

CONTEXT DIAGRAM
TERMINATOR

SCENARIO hijk SCENARIOSCENARIO

UXh

AX

UXhi

UXhij

UXhijk

UX-hijk1 UXhijk2 UXhijk3 UXhijk4

EXTENDED
USE CASE

USE
CASE

CONTEXT DIAGRAM
TERMINATOR

SCENARIO

14A-3-

c JOG System Engineering, Inc.A-3-272R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The classifier is the product
entity the specification is being
written for.

Context Diagram

TERMINATOR
UX-1 TERMINATOR

UX-2

TERMINATOR
UX-3

CLASSIFIER
AX

Identify one or more use cases
for each terminator.

1

Borrowed from Modern Structured Analysis to
provide an organized approach to use case

identification.

The terminators reflect necessary
external influences between the
system and its environment.

c JOG System Engineering, Inc.A-3-282R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Use Case Fundamentals

Actor Name

Use Case
Name

• A use case is a more expressive context
diagram common in modern structured
analysis.

• A use case bubble represents some aspect
of the system being developed.

• An actor represents some external agent
gaining benefit from the system.

15A-3-

c JOG System Engineering, Inc.A-3-292R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Use Case Relationships
Actors derive

tangible
benefits from
the system.

Classifier AX

Actor Name

Use Case
Name

Included
Use Case

Extend
Relationship

Include
Relationship

Generalization
Relationship

Extended
Use Case

Generalization
Use Case

Generalization
Use Case

c JOG System Engineering, Inc.A-3-302R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Use Case Relationships

• Extend
– Pushes common behavior into other use cases that extent a

base use case

• Include
– Pulls common behavior from other use cases that a base use

case includes

• Generalization
– A child use case inherits behavior and meaning of the base

use case

– The child use case may add or override the behavior of the
base use case

16A-3-

c JOG System Engineering, Inc.A-3-312R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Use Case UX-11

Actors derive
benefits from
the system.

Use case 1 of
terminator 1 for
classifier AX.

2

3

AX
The word extend
is used here in a

generic way
here to embrace
extend, include,

and
generalization
relationships.

Use Case
UX-11

Extended
Use Case UX-111

Extended
Use Case UX-112

Extended
Use Case UX-113

c JOG System Engineering, Inc.A-3-322R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Possible Multiple Scenarios

Extended
Use Case UX-113

Scenario
 UX-1131 Scenario

 UX-1132

Scenario
 UX-1133

4

Textual scenario descriptions

The word extend is
used in a generic

way here to
embrace extend,

include, and
generalization
relationships.

17A-3-

c JOG System Engineering, Inc.A-3-332R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Scenario

• A sequence of actions that illustrates behavior.

• A scenario may be used to illustrate an
interaction or execution of a use case instance.

• Text description that can be captured in
paragraph 3.1.2.h.i.j.k of the classifier
specification.

c JOG System Engineering, Inc.A-3-342R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Examine Each Scenario Dynamically

• Activity, sequence, and communication diagrams
require identification of lower tier entities leading
to additional of entities on the consolidated
product entity diagram

• State diagrams may also be useful in identifying
essential characteristics appropriate for the entity
being analyzed

• Requirements flow out of the dynamic analysis
and into the specification for the entity being
analyzed

18A-3-

1A-4-

c JOG System Engineering, Inc.A-4-1
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

REQUIREMENTS MANAGEMENT

JOG SYSTEM ENGINEERING, INC.
GRAND SYSTEMS DEVELOPMENT

TUTORIAL PROGRAM

AN EFFECTIVE SPECIFICATION
DEVELOPMENT ALGORITHM TUTORIAL

VERSION 10.1

c JOG System Engineering, Inc.A-4-2
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Agenda

• Process summary

• Organizing and specification responsibility

• Requirements risk management

• Traceability

• Tools

• Review, approval, release, and distribution

• A peek into the future

2A-4-

c JOG System Engineering, Inc.A-4-3
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Life Cycle Model

c JOG System Engineering, Inc.A-4-4
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Suggested Enterprise Structure

ASSURE
PRODUCT AND

PROCESS
QUALITY

PROVIDE
PROGRAM

RESOURCES

MANAGE THE
ENTERPRISE

PERFORM
ENTERPRISE

BUSINESS

ACUIRE NEW
BUSINESS

PRODUCT
ORIENTED

TEAMS

3A-4-

c JOG System Engineering, Inc.A-4-5
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Benefits of Product-Oriented Team
Structure

SEGMENT
1

SEGMENT
2

SEGMENT
3

SEGMENT
4

IPT
1

IPT
2

IPT
3

IPT
4

PRODUCT N-SQUARE DIAGRAM

ORGANIZATION N-SQUARE DIAGRAM

CROSS-
ORGANIZATIONAL
INTERFACE
REQUIREMENT

INTER-TEAM
COMMUNICATION
REQUIREMENT

TEAMS

PRODUCT
ENTITIES

c JOG System Engineering, Inc.A-4-6
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The System Product Entity Structure
and Teaming

Hardware entity
Software entity Program

Manager

Team 1 Team 2 Team 3

Team 11 Team 12 Team 13 Team 21 Team 22 Team 23 Team 31 Team 32 Team 33

PIT

Development
Orientation

4A-4-

c JOG System Engineering, Inc.A-4-7
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Risk Defined

• The danger that injury, damage, or loss will occur
• Somebody or something likely to cause injury,

damage, or loss
• The probability, amount, or type of possible loss

incurred by an insurer
• The possibility of loss in an investment or

speculation
• The statistical chance of danger from something,

especially from the failure of an engineered
system

c JOG System Engineering, Inc.A-4-8
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Risk Measurement Parameters

CAT TITLE P(O) DESCRIPTION
----- ------------------------- ------------- ---
5 Nearly Certain 0.95-1.00 Will occur at least once during program
4 Probable 0.75-0.95 Will probably occur once during program
3 Possible 0.50-0.75 May occur during program
2 Unlikely 0.25-0.49 Will probably not occur during program
1 Nearly Impossible 0.00-0.24 Will not occur during program

CAT TITLE DESCRIPTION
------ ---------------------------- --
5 Catastrophic Program in jeopardy of termination
4 Serious Serious damage to program
3 Moderate Problems cause program focus difficulties
2 Minor Problems that can be easily be overcome
1 Null No problem

Probability of Occurrence

Seriousness of Effect

5A-4-

c JOG System Engineering, Inc.A-4-9
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Risk Metric Values

5

4

3

2

1

5 4 3 2 1

SERIOUSNESS OF THE EFFECT

High Risk
Medium Risk
Low Risk

25 20 15 10 5

20 16 12 8 4

15 12 9 6 3

10 8 6 4 2

5 4 3 2 1

c JOG System Engineering, Inc.A-4-10
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Aggregate Program Risk Index

6A-4-

c JOG System Engineering, Inc.A-4-11
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Traceability Forms

• Vertical requirements traceability
– Hierarchical or parent-child
– Requirements source traceability
– Requirements rationale traceability

• Longitudinal traceability
– Requirements to design and verification

• Lateral traceability
– Traceability to method

• Applicable document
– Internal integrity

c JOG System Engineering, Inc.A-4-12
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Traceability Integration

• Lateral traceability within TSA and UML
independently should be no problem with all
requirements derived from models

• Vertical interface traceability is decomposition
driven within TSA and UML as well as across the
HW-SW gap

• Environmental requirements are significantly
different between HW and SW so traceability is
not a significant issue between them

• Performance requirements across the HW-SW
gap offer a vertical traceability challenge

7A-4-

c JOG System Engineering, Inc.A-4-13
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

The System Product Entity Structure

Level at which a
subordinate software
entity is identified

Hardware entity
Software entity

System

This is the kind
of relationship

of interest

c JOG System Engineering, Inc.A-4-14
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

FUNCTION U FUNCTION V FUNCTION W FUNCTION X

RAS

PRODUCT
ENTITY

AX

PRODUCT
ENTITY

AX2

PRODUCT
ENTITY

AX1

PRODUCT
ENTITY

AX3

}

Entity AX2

Context Diagram Terminator UX 2-1

Use Case UX2-11

Extended Use Case UX2-111

Scenario UX2-1111

Sequence Diagram UX2-11111
Communication Diagram UX 2-11112

Activity Diagram UXA-11113
State Diagram UXA-11114

SOFTWARE
ENTITY

IDENTIFIED
THROUGH TSA

CONTINUED
TRADITIONAL
STRUCTURED
ANALYSIS FOR
AX1 AND AX3

THESE ARE THE MODEL
ID (MID) THAT

REQUIREMENTS
DERIVED FROM THESE
MODELING ARTIFACTS
ARE MAPPED TO IN THE
RAS COMPLETE (IN THE
BIG DUMB DATABASE)

Traceability Across the Gap

• Function FT within TSA application
• Performance requirement RID D8U776

allocation to AX2 along with many other
requirements from multiple functions

• Context diagram terminator UX21
• Use case UX211
• Extended Use Case UX2111
• Scenario UX21111
• Sequence diagram UX211111
• Software requirement RID 894RT5

derived from the sequence diagram
• RID 894RT5 traceable to one of the

requirements allocated to AX2 using
TSA.

FUNCTION
FT

FUNCTION
FU

FUNCTION
FV

FUNCTION
FW

The Gap

Sequence Diagram UX211111
Communication Diagram UX211112

Activity Diagram UX211113
State Diagram UX211114

Entity AX2

Context Diagram Terminator UX21

Use Case UX211

Extended Use Case UX2111

Scenario UX21111

8A-4-

c JOG System Engineering, Inc.A-4-15
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Traceability Evaluation Matrix

c JOG System Engineering, Inc.A-4-16
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Traceability Evaluation Matrix

R%1

R%2

R%3

R%4

R%5

R%6

R%7

R%8

R%9

R%10

R
@

1

R
@

2

R
@

3

R
@

4

R
@

5

R
@

6

R
@

7

R
@

8

R
@

9

R
@

10

R
@

11

R
@

12

R%1

R%2

R%3

R%4

R%5

R%6

R%7

R%8

R%9

R%10

RU7Z7H

R9IER6

R937YF

RJ8E6G

RJYT6T

RHGT5T

RID87W

RBJ8S7

RL34DF

R456HD

ACTUAL RID
EXAMPLE

Requirements Derived
From UML Modeling

R
eq

u
ir

em
en

ts
 D

er
iv

ed
F

ro
m

 T
S

A
 M

o
d

el
in

g

Alternatively, one could rely upon experienced inspection without the
organizing influence of the matrix.

9A-4-

c JOG System Engineering, Inc.A-4-17
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Today’s Tools

RAS
IN

DOORS

ENHANCED
FFBD

IN CORE

MODERN
STRUCTURED

ANALYSIS
USING

STP

MANUALLY
ACCOMPLISHED

N-SQUARE
ANALYSIS

MANUALLY
ACCOMPLISHED

ENVIRONMENTAL
ANALYSIS

UML
ACCOMPLISHED

WITH
RATIONAL

PRODUCTS
PUBLISH

SPECIFICATION

VERTICAL
TRACEABILIY

N-SQUARE
INTERFACE
ANALYSIS

SPECIALTY
ENGINEERING

SCOPING
MATRIX

TRADITIONAL STRUCTURED
ANALYSIS

c JOG System Engineering, Inc.A-4-18
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Tools Integration

10A-4-

c JOG System Engineering, Inc.A-4-19
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Tomorrow’s Tools

• Front end modeling tools
– Use case modeling
– Function/activity modeling
– State modeling (behavioral modeling)
– Sequence/timeline modeling
– Product entity and interface modeling
– Specialty engineering database linkage
– Environmental coverage

• Connection of modeling to management database
• Big dumb database

– Requirements capture
– Traceability
– Value management
– Specification publishing

c JOG System Engineering, Inc.A-4-20
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Tools Integration

TRADITIONAL
STRUCTURED

ANALYSIS
UML

DATA
BASE

LOADERS

DATA
BASE

LOADERS

DATA
BASE

SYSTEMS

DATA
BASE
MGMT

11A-4-

c JOG System Engineering, Inc.A-4-21
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Integrated Tool Set

c JOG System Engineering, Inc.A-4-22
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Configuration Management of
Requirements Documentation

REQUIREMENTS
ANALYSIS

DATABASE
CONTENT

COMPUTER
PROJECTION

REVIEW

PUBLISH
AND

RELEASE

LIBRARY

CONFIGURATION MANAGED CONTENT

Portion of database corresponding to
released specifications and library content
under formal configuration control.

SYSTEM ENGINEERING
MANAGED CONTENT

12A-4-

c JOG System Engineering, Inc.A-4-23
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Utility Of Computer Projection

ON-LINE NETWORK CAPABILITY
PUT THE PROJECTION CAPABILITY IN THE WORK AREA
APPLY REAL-TIME CONCURRENT DEVELOPMENT (IPD)
FORM AND REFORM BETWEEN MEETING AND INDIVIDUAL
WORK QUICKLY

c JOG System Engineering, Inc.A-4-24
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Specification Review and Approval
Process

13A-4-

c JOG System Engineering, Inc.A-4-25
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Evaluate for Template Faithfulness

• Compare specification cover data with template
(standard)

• Compare specification paragraphing structure
with template

• Compare specification style with template style
guide

•

•

c JOG System Engineering, Inc.A-4-26
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Individual Requirement Quality

• Spot check specification requirements for
requirements quality checklist compliance

• Spot check specification for requirements
quantification where appropriate

•

•

•

14A-4-

c JOG System Engineering, Inc.A-4-27
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Section 2 Traceability

• All documents listed in Section 2 called
somewhere in the specification

• All documents tailored, if necessary, to limit
coverage to the application

• All documents called in the requirements listed in
Section 2

• Spot check for excessively tailored standards
which could be quoted instead of being called

• Ensure documents called are current and
accepted authorities for the application

c JOG System Engineering, Inc.A-4-28
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Completeness and Avoidance of
Unnecessary Content

• Ask principal engineer how content was derived
– If ad hoc, there should be concern

– If through structured analysis, spot check how a few
requirements were derived (ask to see the supporting
modeling data)

• Ensure all requirements traceable to parent
requirements

•

15A-4-

c JOG System Engineering, Inc.A-4-29
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Residual Risk Evaluation

• All TBD/TBR are closed or, if not, are being
carried as program or team risks

• An approved concept exists

•

•

•

c JOG System Engineering, Inc.A-4-30
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Movement To Universal Method
TRADITIONAL
STRUCTURED

ANALYSIS

MODERN
STRUCTURED

ANALYSIS

SYSTEM
EXTENDED

UNIFIED
MODELING
LANGUAGE

SYSTEM
PHYSICAL

DESIGN

MANUFACTURE

VERIFICATION

SYSTEM
PROBLEM

SPACE
ANALYSIS

UNIFIED
MODELING
LANGUAGE

HARDWARE
DEVELOPMENT

SOFTWARE
DEVELOPMENT

PROCEDURAL
DEVELOPMENT

QUALITY INFLUENCES

MANAGEMENT INFLUENCES

SPECIFI-
CATIONS

ENGINEERING
DRAWINGS &

MANUFACTURING
PLANNING

PHYSICAL
PRODUCT

LINES OF
CODE

LANGUAGES,
NETWORKING,
& MACHINES

HARDWARE
DESIGN

SOFTWARE
DESIGN

WRITE
PROCEDURES

PUBLISH
PROCEDURES

DESIGN
PROCEDURES

EARLY
OOA

METHODS

FUNCTIONAL
FLOW

DIAGRAMS

ARCHI-
TECTURE

BLOCK
DIAGRAMS
SCHEMATIC

BLOCK
DIAGRAMS

REQUIRE-
MENTS

ANALYSIS
SHEET

DATAFLOW
DIAGRAMS

PSPECS

STATE
DIAGRAMS

DATA
DICTION-

ARY

OBJECT
DIAGRAMS

DATA
FLOW

DIAGRAMS

STATE
DIAGRAMS

USE CASE
DIAGRAM

ACTIVITY
DIAGRAM

SEQUENCE
DIAGRAM

COLLAB
DIAGRAM

STATE
CHART

OBJECT/
CLASS

DIAGRAM

COMPONENT
DIAGRAM
DEPLOY-

MENT
DIAGRAM

UNPRECEDENTED
SYSTEM

DEVELOPMENT

PRECEDENTED
SYSTEM

DEVELOPMENT

16A-4-

c JOG System Engineering, Inc.A-4-31
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

UML and Functional Analysis

Unified Modeling Language (UML)

Traditional Structured Analysis
A Subset of UML?

DEPLOY-
MENT

DIAGRAM

COMPONENT
DIAGRAM

OBJECT
& CLASS

DIAGRAMS

ARCHITECTURE
BLOCK DIAGRAM

ACTIVITY
DIAGRAM

SEQUENCE
DIAGRAM

COMMUNI-
CATION

DIAGRAM

TIMELINE
DIAGRAM

STATE
CHART

SCHEMATIC
BLOCK

DIAGRAM

FUNCTIONAL
FLOW

DIAGRAM

USE
CASE

DIAGRAM

INTERACTION DIAGRAMS

PHYSICAL
FACET

BEHAVIORAL
FACET

FUNCTIONAL FACET

STATE
DIAGRAM

STATIC DIAGRAMS DYNAMIC DIAGRAMS

c JOG System Engineering, Inc.A-4-32
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

UML SysML
PUSH

THESE
COMPONENTS

TOGETHER
MORE TIGHTLY

SysML DERIVED
FROM UML

UNIVERSAL MODEL
OF THE FUTURE

Requirements Diagram
Parametric Diagram
Assembly Diagram

Component Diagram
Deployment Diagram
Communication Diagram
Interaction Overview Diagram
Package Diagram

Use Case Diagram
Activity Diagram
State Diagram
Sequence Diagram
Object/Class Diagram
Timing Diagram
Composite Diagram

Modeling Changes In the Near Term

REPLACING
TSA

17A-4-

c JOG System Engineering, Inc.A-4-33
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

System Modeling Evolution Timeline

2010 203019701920 1990

N
O

W

RISE IN THE USE
OF STRUCTURED

ANALYSIS

05-15-2002 DATA UNSUBSTANTIATED
DATES ARE APPROXIMATE

DATABASE DRIVEN
DEVELOPMENT

MODEL DRIVEN
DEVELOPMENT

DOCUMENT DRIVEN
DEVELOPMENT

c JOG System Engineering, Inc.A-4-34
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Over the Hill and Through the Woods
to Utopia

Traditional
Structured
Analysis

Flow
Charting

Modern
Structured
Analysis Early

OOA UML

1950s 2010s

Utopia

FFBD
IDEF0
EFFBD

BD

HP

HFA

SysML

DoDAF

18A-4-

c JOG System Engineering, Inc.A-4-35
2R Short

NDIANATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Review and Summary
The target is completeness and avoidance of unnecessary content

Use models to
identify essential
characteristics

Write requirements
in primitive form
based on essential

characteristics
identified through

modeling.

Do the analysis

Translate into
full sentences
and insert into
paragraph
structure.

