#### Introducing Object Oriented Systems Engineering Methods to University Systems Engineering Curricula

#### **Chris Ryder** Johns Hopkins University Applied Physics Laboratory



JOHNS HOPKINS ENGINEERING The Whiting School of Engineering The Johns Hopkins University APPLIED PHYSICS LABORATORY

# References

- Systems Engineering: Principles and Practices
  - Alexander Kossiakoff and William Sweet
- OMG SysML Tutorial (Presented by Abe Meilich on 10/23)
- Sandy Friedenthal "Model Driven Architecture for Systems Engineering"
- http://www.omgsysml.com
- OMG SysML Specification





# Observation

- There is no standardized approach to SE architecting, modeling and design used in the JHU WSE SE Curriculum
  - Most instructors teach the methods they are familiar with
- The single common element is the SE Method
  - And its relationship to SE Life Cycle and Materialization
- Most students/ classes use Power Point as the modeling tool
  - Difficult to portray engineering diagrams
  - Does not "contain" any data details
- Tools used by instructors include:
  - VITECH Core
  - Sparx Enterprise Architect
  - MS Visio





# Proposition

- Introduce Object Oriented Systems Engineering Methods as the basis for architecting, modeling and design for design related activities in SE courses
- At a minimum, introduce model-driven SE using a standardized modeling language
  - Independent of method
  - Independent of any specific tool
- OMG SysML meets this criterion
  - It is standardized (released by OMG on 6 July 06)
  - Implemented by several tool vendors
    - Most of whom will provide licenses at little (i.e. < \$100) or no cost





# **The Systems Engineering Method**

- Every phase of the systems life cycle consists of some form of:
  - Requirements Analysis
  - Functional Definition
  - Physical Definition
  - Design Validation
- This is the basis of the JHU WSE Systems Engineering curriculum
- The SE Method is applicable to both traditional Structured Analysis or with OOSEM





## **Systems Engineering Method**



#### Principal Stages in System Life Cycle (Kossiakoff & Sweet)



Products

MIDIVAL DODINI UNDESTELIAL ASSICIATION STRENGTH TEROUGH INDUSTRY & TECHNOLOGY

### **System Materialization**

|             |             |             |                |              |              | Integration     |
|-------------|-------------|-------------|----------------|--------------|--------------|-----------------|
|             | Needs       | Concept     | Concept        | Advanced     | Engineering  | and             |
| Phase/Level | Analysis    | Exploration | Definition     | Development  | Design       | Evaluation      |
|             |             |             |                |              |              | Test and        |
|             | Define      |             | Define         |              |              | Evaluate        |
|             | Operational | Explore     | Selected       | Validate     |              | (System and     |
| System      | Objectives  | Concepts    | Concepts       | Concept      |              | Operational)    |
|             |             |             |                | Validate     |              |                 |
|             |             | Define      | Define         | Selected     |              |                 |
| Subsystem   | Visualize   | Functions   | Configuration  | Subsystems   |              | Integrate, Test |
|             |             |             |                | Validate,    |              |                 |
|             |             |             | Select, Define | Specify      |              |                 |
| Component   |             | Visualize   | Functions      | construction | Design, Test | Integrate,      |
|             |             |             |                |              |              |                 |
| Sub-        |             |             |                | Define       |              |                 |
| component   |             |             | Visualize      | Functions    | Design       |                 |
|             |             |             |                |              |              |                 |
|             |             |             |                |              | Select or    |                 |
| Part        |             |             |                | Visualize    | adapt        |                 |

Ref: SYSTEMS ENGINEERING PRINCIPLES & PRACTICE

A Guide to the Engineering of Complex Systems





# JHU WSE Systems Engineering Program

- ~400 student enrolled
- Curricula offered at four primary campuses
  - APL, JHU Montgomery County Campus, WSE Dorsey Center, Southern Maryland Higher Education Center
- Curricula also offered on site at industry locations
  - MITRE (Bedford, MA; Vienna, VA)
  - NAVSEA (Crystal City, VA)
  - BAE Systems (Nashua, NH)
- Courses conducted by instructor teams
  - One from APL and one from industry





# JHU EPP SE Core Program



- Denotes courses with modeling and design projects





# Why Object Oriented SE?

- Applies the SE Method
  - Requirements are captured using SysML requirements diagram and Requirements Traceability Matrix (RTM)
  - Functional analysis and decomposition performed using SysML behavioral diagrams
  - Physical elements, behaviors and relationships are modeled using SysML structural diagrams
    - Functionality assigned to physical objects
- Trace model elements to requirements





# **OOSE Requirements Capture**

- Start at the Beginning
  - Needs Analysis and requirements definition
- Formulating the "Requirements Model"
  - Define/scope the problem
  - Analyze requirements
    - Necessary, concise, attainable, complete, consistent, unambiguous, verifiable
    - Create requirements traceability
  - Documenting the requirements
    - Constructing the SysML Requirements Diagram
    - Building the Requirements Traceability Matrix





# **OOSE Functional Analysis**

- Structured SE and Object Oriented SE Methods are "Homeomorphic" (Joe Carl, PhD, Retired Guy)
  - "Possessing intrinsic topological equivalence"
  - SA representation can be directly mapped to OO form
- In other words:
- OO methods involves the same "Top Down" hierarchical approach
  - Top Down/ Breadth First
  - Event Driven
    - Objects have well-defined functionality that execute tasks as a sequence of events
    - Interactions between objects are defined at each level in the system
    - Refined as lower-level objects become instantiated
    - Systems, subsystems, components exist in a state





# **Object Oriented**

- Every system is composed of "Objects"
- All Objects contain Attributes, Operations, Parameters and Constraints
  - Operations → FUNCTIONS
- Functional analysis still applies to OOSE
  - Operations are assigned to an object, however abstract, early in the process
  - Unlike with OOSWE, "Functional Decomposition" is not a dirty word
- Measures are contained within the objects
  - Measures that can quantify objectives





# So What is the Difference?

- Focus on the "Logical" as opposed to the "Functional"
  - Logical elements posses both Function and State
- Analyze the system from the viewpoint of the "Things" however abstract
  - Consistent with Systems Materialization
- OOSE is a model-driven methodology by definition





# **Systems Engineering Model**

- A Systems Engineering model captures the essential elements of the systems engineering life-cycle
- "Dynamic and recursive process" (Bootch, Rumbaugh, Jacobson)
  - Iteratively captures enterprise capabilities and systems requirements
  - Promotes incorporation of technology evolution
- Forms basis for sound, long-term SE and analysis
  - Compliant with DoDAF and JCIDS





## **Model-Driven SE Approach**

- Establish system model bases on:
  - Requirements model
  - Functional model
  - Logical/ Physical model
- Show relationships between the models
  - Link requirements to functions
  - Link functions to system/ elements
- Understand the capability being developed

#### "If you don't model it, you won't understand it." Ivar Jacobson





# OMG SysML

- OMG SysML<sup>™</sup> is a standardized family of diagrams that addresses requirements, functional and logical/physical elements
  - OMG SysML is suitable for both OO and structured methods, but it was formulated from UML with OO methods in mind
    - SysML standard ~ 230 pages
  - As opposed to non-standard SA diagrams
    - IDEF-0 (180 Pages)
    - IDEF-3 (235 Pages)
    - Data Flow/ Control Flow (No standard)
    - Functional Flow Diagrams (No standard)
    - Enhanced Functional Flow Block Diagrams (No Standard)
- Tool Vendors are implementing it in their applications





# What Is SysML?

- A graphical modeling language in response to the UML for Systems Engineering RFP developed by the OMG, INCOSE, and AP233
  - A UML Profile that represents a subset of UML 2 with extensions
- Supports the specification, analysis, design, verification, and validation of systems that include hardware, software, data, personnel, procedures, and facilities
- Supports model and data interchange via XMI and the evolving AP233 standard (in-process)

#### SysML is Critical Enabler for Model Driven SE

Source: OMG SysML Tutorial







#### **Relationship Between SysML and UML**





JOHNS HOPKINS ENGINEERING The Whiting School of Engineering



# SysML Taxonomy



Source: OMG SysML Tutorial



 JOHNS HOPKINS
 The Whiting School of Engineering



# **Behavioral Elements in the Functional Model**

- Represented by Use Cases and SysML behavioral diagrams
- Executed by "Actors" outside the system boundary
  - Actor is a form of Block and its own attributes and operations
- Actor represents a role, not an person or group
- Block at one level can be actor at an other
  - Actors are often external systems or internal system controls
- Actor executes the Use Case on the materiel object, i.e. the system, subsystem, component or part





# **SysML Behavioral Diagrams**



#### Source: OMG SysML Tutorial



JOHNS HOPKINS ENGINEERING The Whiting School of Engineering



# **The Logical Model**

- Physical Definition
  - Beginning with abstract "things"
  - Evolve to real systems
- Assign functionality to the element
- Depict the relationships between elements

The Logical Model is the heart of an architecture – Elements that exhibit behavior and their defined relationships with other elements within the domain





# **SysML Structural Diagrams**



#### Source: OMG SysML Tutorial



JOHNS HOPKINS The Whiting School of Engineering



# **Structural/ Physical Elements**

- Depicts basic logical structure of the system
  - Packages
    - Organize the elements as sub-entities
  - Blocks
    - Basic structural element
      - Same specification as the UML Class
      - Consists of attributes, operations, associations, constraints
      - Also represents human and organizational elements the Actor
  - Ports
    - Specifies interaction points or parts
    - Specifies flow or standardized interface
  - Parametrics
    - Specifies constraints with value types

Copyright © Lockheed Martin Corporation, 2000 – 2003 & INCOSE 2004. All rights reserved.





# **ATIS Case**

- Automated Traffic Intersection System
- Students presented a set of "less-than-good" requirements
  - Describe what improvements need to be done
- Describe the "top level" functions
  - Initiate functional analysis
- Describe the logical elements with assigned functionality
- Depict a hierarchy of components with functions
- Consider interfaces for one subsystem





### **ATIS Context Diagram**





JOHNS HOPKINS ENGINEERING The Whiting School of Engineering



### **ATIS Use Case Diagram**





JOHNS HOPKINS ENGINEERING The Whiting School of Engineering



#### **Functionality Depicted in Hierarchical Form**





JOHNS HOPKINS E N G I N E E R I N G The Whiting School of Engineering



# ATIS SysML Activity Diagram







### **ATIS Block Definition Diagram**

At the system level, attributes must be measurable!



Subsystem/ component Measure of Performance



JOHNS HOPKINS ENGINEERING The Whiting School of Engineering



**ATIS Traffic Sensor Subsystem** 







26 October 2006

APL

### **Example of Internal Block Diagram**





#### **Example of Internal Block Diagram**

composite structure Traffic Sensor «Subsystem» **Traffic Sensor** ATM: Assynchronous Transfer Mode messages are primarily used with «Component» fiber-optic networks using fixed 53 «Component» **Traffic Camera** octet packets **Traffic Radar** ATM: Traffic Radar to CPU ATM: Camera to CPU ATM: CPU «Component» Traffic CPU





26 October 2006

#### **TBDA Requirements Diagram**



# **Summary of OOSE**

- There is nothing special about using Object Oriented SE methods
- It involves the same basic analysis
- OOSE is a model-driven style
  - Models are fundamental to architecture development
- Human beings think in terms of "things"





# Conclusion

- This proposal considers only an introduction to basic OOSEM practices
  - Details of OOSEM is far beyond the scope of design courses
  - OOSEM using SysML could be an entire semester course
  - The INCOSE tutorial is intended to introduce detailed practices for real-world project usage
- By introducing OOSE principles at the University, students can apply the SE Method as it relates to Systems Materialization across the life-cycle
- Standardized modeling methods must be applied
  - Instructors must keep up with evolving industry practices
  - Observation from INCOSE 06 and NDIA SE Conference indicates SysML will be widely used throughout industry

If anything else, you know what "Homeomorphic" means



