
NDIA 9NDIA 9thth Annual Systems Engineering Annual Systems Engineering
ConferenceConference

““Pattern Library for use in Weapons Pattern Library for use in Weapons
System EngineeringSystem Engineering””

October, 2006October, 2006

Frank Salvatore
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 249
fsalvatore@hpti.com

OutlineOutline

Purpose/Objective
Background
Describe Patterns
Give Example
Open Discussion
Discussion Summary
Pattern References

Purpose/ObjectivePurpose/Objective

The purpose of this talk is to
communicate to industry an Idea about
developing a Weapon Systems
Engineering Pattern Library

The objective is to stimulate thought and
get industry input on this idea, expand
on it and reach an agreement as to
weather or not to pursue such effort.

BackgroundBackground

1960’s early 70’s Christopher Alexander Started the
movement and wrote several books dealing with
architecture patterns

1987 Ward Cunningham and Kent Beck experimented
with patterns

1990-1994 Erich Gamma, Rich Helm, Ralph Johnson,
John Vlissides (Gang of Four) Authored the book of
design patterns that was published in 1994

2006 Software Developers are using Patterns.

Patterns for system architecting are very much in their
infancy. Today, the pattern discipline is supported by several small
conferences, by a broad spectrum of activities at established software
engineering conferences, and by a growing body of literature.

What is a Pattern? What is a Pattern?
A "pattern" has been defined as: "an idea that has been useful in one
practical context and will probably be useful in others" [Analysis Patterns -
Reusable Object Models].

Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution. (Alexander)

As an element of language, a pattern is an instruction, which shows how a
solution can be used, over and over again, to resolve the given system of
forces, wherever the context makes it relevant.

In The Open Group Architecture Framework (TOGAF), patterns are
considered to be a way of putting building blocks into context, to describe a
re-usable solution to a problem.

Etc….

What is a Pattern Used For?What is a Pattern Used For?

Building blocks are what you use: patterns can tell you
how you use them, when, why, and what trade-offs you
have to make in doing so.

As an element in the world, each pattern is a relationship
between a certain context, a certain system of forces
which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to
resolve themselves.

What do patterns contain?What do patterns contain?
Name: A meaningful and memorable way to refer to the pattern, typically a single
word or short phrase.

Problem: A description of the problem indicating the intent in applying the pattern
- the intended goals and objectives to be reached within the context and forces
described below (perhaps with some indication of their priorities).

Context: The preconditions under which the pattern is applicable - a description
of the initial state before the pattern is applied.

Forces : A description of the relevant forces and constraints, and how they
interact/conflict with each other and with the intended goals and objectives. The
description should clarify the intricacies of the problem and make explicit the
kinds of trade-offs that must be considered. (The need for such trade-offs is
typically what makes the problem difficult, and generates the need for the pattern
in the first place.) The notion of "forces" equates in many ways to the "qualities"
that architects seek to optimize, and the concerns they seek to address, in
designing architectures. For example: Security, robustness, reliability, fault-
tolerance, Efficiency, performance, throughput, space utilization ,Scalability,
Extensibility, maintainability, modularity, re-usability, composability, portability,
Completeness and correctness, Ease-of-construction, etc….

Creates a syntax for communicating problems in a context and the
conditions for which a solution exists.

What do patterns contain? (cont.)What do patterns contain? (cont.)

Solution: A description, (text and/or graphics), of how to achieve the intended
goals and objectives. Should identify both the solution's static structure and its
dynamic behavior - the people and computing actors, and their collaborations.
May include guidelines for implementing the solution. Variants or specializations
of the solution may also be described.

Resulting Context: The post-conditions after the pattern has been applied.
Implementing the solution normally requires trade-offs among competing forces.
This element describes which forces have been resolved and how, and which
remain unresolved. It may also indicate other patterns that may be applicable in
the new context. (A pattern may be one step in accomplishing some larger goal.)
Any such other patterns will be described in detail under Related Patterns.

Examples:One or more sample applications of the pattern which illustrate each of
the other elements: a specific problem, context, and set of forces; how the pattern
is applied; and the resulting context.

Rationale: An explanation/justification of the pattern as a whole, or of individual
components within it, indicating how the pattern actually works, and why - how it
resolves the forces to achieve the desired goals and objectives, and why this is
"good". The Solution element of a pattern describes the external structure and
behavior of the solution: the Rationale provides insight into its internal workings.

Provides a solution w/examples & rational to a problem within a context
for a given set of conditions

What do patterns contain? (cont.)What do patterns contain? (cont.)

Related Patterns; The relationships between this pattern and others.
These may be predecessor patterns, whose resulting contexts
correspond to the initial context of this one; or successor patterns,
whose initial contexts correspond to the resulting context of this one; or
alternative patterns, which describe a different solution to the same
problem, but under different forces; or co-dependent patterns, which
may/must be applied along with this pattern.

Known Uses; Known applications of the pattern within existing
systems, verifying that the pattern does indeed describe a proven
solution to a recurring problem. Known Uses can also serve as
Examples.

Patterns may also begin with an Abstract providing an overview of the
pattern and indicating the types of problems it addresses. The Abstract
may also identify the target audience and what assumptions are made of
the reader.

Provides reference to other patterns with similar context and know uses
wereby forming the basis for a searchable and well referenced repository

of solutions

AntiAnti--PatternsPatterns
An AntiPattern is a pattern that tells how to go from a
problem to a bad solution. (Contrast to an
AmeliorationPattern, which is a pattern that tells how to go
from a bad solution to a good solution.)

A good AntiPattern tells why a bad solution looks attractive
(e.g. it actually works in some narrow context), why it turns
out to be bad, and what positive patterns are applicable in its
stead.

Identifying bad practices can be as valuable as identifying good
ti

Good Pattern CharacteristicsGood Pattern Characteristics
Solves a problem: Patterns capture solutions, not just abstract principles or
strategies.

It is a proven concept: Patterns capture solutions with a track record, not theories or
speculation.

The solution isn't obvious: Many problem-solving techniques (such as software
design paradigms or methods) try to derive solutions from first principles. The best
patterns generate a solution to a problem indirectly--a necessary approach for the
most difficult problems of design.

It describes a relationship: Patterns don't just describe modules, but describe
deeper system structures and mechanisms.

The pattern has a significant human component (minimize human intervention).
All software serves human comfort or quality of life; the best patterns explicitly appeal
to aesthetics and utility.

A pattern language defines a collection of patterns and the rules to combine them
into an architectural style. Pattern languages describe software frameworks or
families of related systems.

What is the Value of Patterns?What is the Value of Patterns?

Useful for Capturing & Communicating
Best Practices
Lessons Learned
Design Guidance
Knowledge
etc….

Provides Instruction
Increase Productivity
Reduce Risk

A Weapon System Pattern Library will enable retrieval of
information in a form were it can be used by others to

successfully solve problems .

The Value
Proposition

Pattern ExamplePattern Example

Name: Buy the First Round, Kevlin Henney, April 2001, revised June 2001

Context: Meeting colleagues for a few drinks in a bar or pub.

Problem: How do you maximize your drinking, whilst both minimizing
expenditure and maintaining good will with your drinking colleagues?

Forces: You have limited money, or at least limited desire to spend it. The
drinks are not free. You want to drink (possibly lots). Your colleagues
will not all turn up on time, but there will be quite a few of them
eventually. You do not want your colleagues to think (or perhaps notice)
that you are being tight.

Solution: Buy the first round of drinks before all your colleagues have
arrived.

Consequences: You need to get to the bar early, preferably first and with
a couple of colleagues in tow. Volunteering to buy the first drink shows
good nature and enthusiasm, and spreads good will. You get free
drinks for the rest of the evening, assuming a reasonable increase in
the number of colleagues and a steady rotation of round buying. If
there is enough drinking, others will not notice your use of this pattern
or recall any other known uses. This supports repeatability in future as
only your generous nature will be remembered.

Pattern used in Lucent telecommunication products such as the Switching System® (extracted informally from
Adams, 1996).: Copied from Hillside Group Website. http://hillside.net/patterns/definition.html

Pattern ExamplePattern Example

Name: Try All Hardware Combos

Problem: The control complex of a fault-tolerant system can arrange its
subsystems in many different configurations. There are many possible paths
through the subsystems. How do you select a workable configuration when there
is a faulty subsystem?

Context: The processing complex has several duplicated subsystems including a
CPU, static and dynamic memory, and several busses. Standby units increase
system reliability. 16 possible configurations (64 in the 4 ESS) of these
subsystems give fully duplicated sparing in the 5ESS. Each such configuration is
called a configuration state.

Forces: You want to catch and remedy single, isolated errors. You also want to
catch errors that aren't easily detected in isolation but result from interaction
between modules. You sometimes must catch multiple concurrent errors. The
CPU can't sequence subsystems through configurations since it may itself be
faulty. The machine should recover by itself without human intervention, many
high-availability system failures come from operator errors, not primary system
errors. We want to reserve human expertise for problems requiring only the
deepest insights.

Pattern Example (cont.)Pattern Example (cont.)

Solution: Maintain a 16-state counter in hardware called the configuration
counter. There is a table that maps that counter onto a configuration state.
The 5ESS switch tries all side 0 units (a complete failure group), then all
side 1 units (the other failure group), seeking an isolated failure. When a
reboot fails, the state increments and the system tries to reboot again. The
subsequent counting states look for multiple concurrent failures caused by
interactions between system modules.

Resulting Context: Sometimes the fault isn't detected during the reboot
because latent diagnostic tasks elicit the errors. The pattern Fool Me
Once solves this problem. And sometimes going through all the counter
states isn't enough; see the patterns Don't Trust Anyone and Analog
Timer.

Rationale: The design is based on hardware module design failure rates
(in Failures in a trillion (FITs)) of the hardware modules. The pattern
recalls the extreme caution of first-generation developers of stored
program control switching systems.

Open DiscussionOpen Discussion

Let’s Discuss and Brainstorm the Application
of patterns to the Domain of doing systems
engineering.

Is this something that we need to do?
What patterns should we write?
Should they be domain specific?
Should they be generic?

What does Industry think about developing a systems
engineering pattern language?

Discussion SummaryDiscussion Summary

Did we decide that patterns could be useful in
our industry?

Did we identify any Patterns that should be
written?

Who should develop such a repository?

Some Pattern ResourcesSome Pattern Resources

Christopher Alexander Website
www.patterlanguage.com
The OpenGroup
http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html

Pattern-Oriented Software Architecture: A System of
Patterns
http://www-128.ibm.com/developerworks/patterns/
Hillside Group
www.hillside.net
Portland’s Pattern Repository
http://www.c2.com/cgi/wiki?HistoryOfPatterns

Design Patterns: Elements of Reusable Object
Oriented Software”, Eric Gamma, Richard Helm, Ralph
Johnson, John Vlissides

