

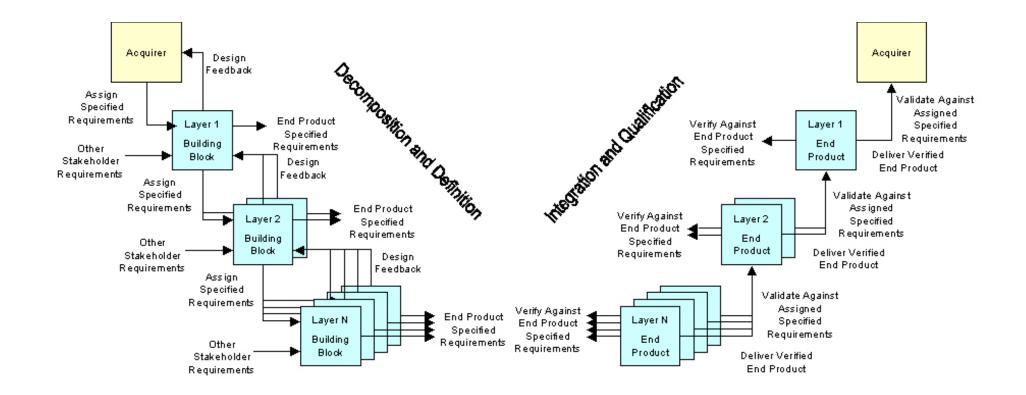
Model Driven Systems Engineering: Linking the "Vee"

Tim Tritsch – Vitech Corporation Janice Magill - NAVAIR James Newbury – NAVAIR

NDIA Systems Engineering Conference 24 October 2006

Topics

- The "Vee" chart Review
- Model Driven Systems Engineering Overview
- The Advanced Arresting Gear Program
- AAG System Model Development
- AAG Test Program
- Description of Verification Method Structure
- Relating Requirements to Verification Methods
- Summary and Conclusions



- Provides basic map of a system development cycle
- Implies each phase of design definition has associated integration and qualification activities
- Principles adopted in DoD acquisition guidelines and many ACAT programs
 - ANSI/EIA- 632 (Processes for Engineering a System)
 - Defense acquisition's Integrated Defense Acquisition, Technology and Logistics Life Cycle Management Framework

Sitech Requirements Development and Qualification

Has been extended to include phased development strategies.

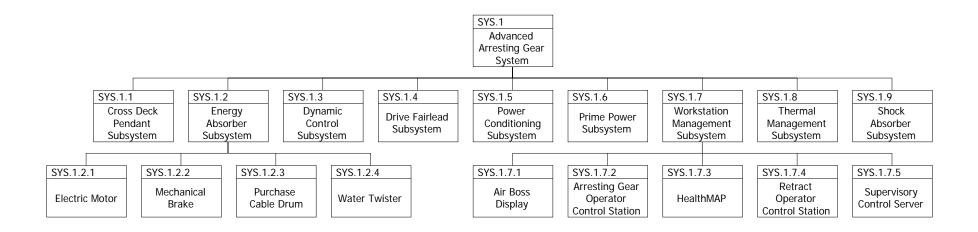
- Complete System Definition Capture in System Model
 - Concept of Operations
 - System requirements
 - System behavior
 - System structure
 - Component interaction (I/O)
 - Verification, Validation, and Qualification tasks and methods
 - Relevant relationships between all the above
- Consistency in documentation
- Multiple views of the System (Textural and/or Graphical)

- A typical airport has a runway over a mile, an aircraft carrier has less than 800 feet.
- On a carrier, the runway moves with the waves.
- On a carrier, the hot, wet, salty environment is destined to corrode any equipment.
- On a carrier, there are stringent equipment requirements
 - Space limitations
 - Rigorous shock and vibration standards
 - Strict electromagnetic interference and compatibility requirements
- On a carrier, equipment is repaired and maintained by 19 year olds working 12 hour shifts.

- Naval Air System Command (NAVAIR) and General Atomics (GA) have taken the challenge to develop a new arresting system that will take aircraft carriers into the 21st century
- The AAG program
 - Has completed a technology demonstration phase
 - Was designated ACAT II at MS B in October 2004
 - Is currently in System Development and Demonstration
 - Has Low Rate Initial Production slated for October 2009
- The team is jointly applying a Model Based Approach to manage the Advance Arresting Gear system definition.

AAG System Model Development

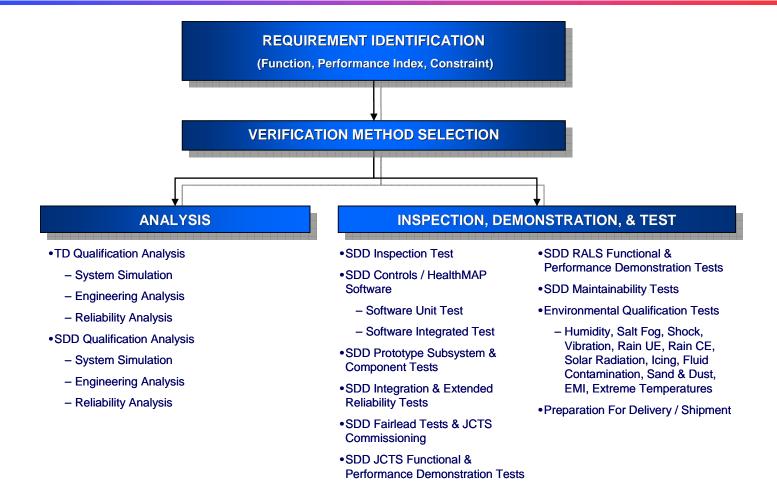
- NAVAIR -
 - Stakeholder Requirements identified, collected, and defined to develop Operational Capability Document (OCD)
 - Chose CORE[™] as the CASE tool to manage system technical requirements and produce System Specification part of Request for Proposal (RFP)
 - Performance Requirements
 - Constraints
 - External System Interfaces
 - Verification Methods for all requirements
 - Model Provided as GFI
 - Traceability to OCD
 - System Functional and Physical Architecture
 - Data Item Flow from External Systems
 - Modified in transition to Capability Design Description (CDD)


- General Atomics -
 - Required to use "A CASE tool", chose CORE™ to take full advantage of GFI system model
 - Developed physical and functional representation at the subsystem and component level
 - Derive Performance Requirements
 - Derive Design Constraints
 - Define Internal Interface Requirements
 - Define Internal Data flow
 - Flow Down of System Constraints (i.e. reliability, maintainability, and human factors)

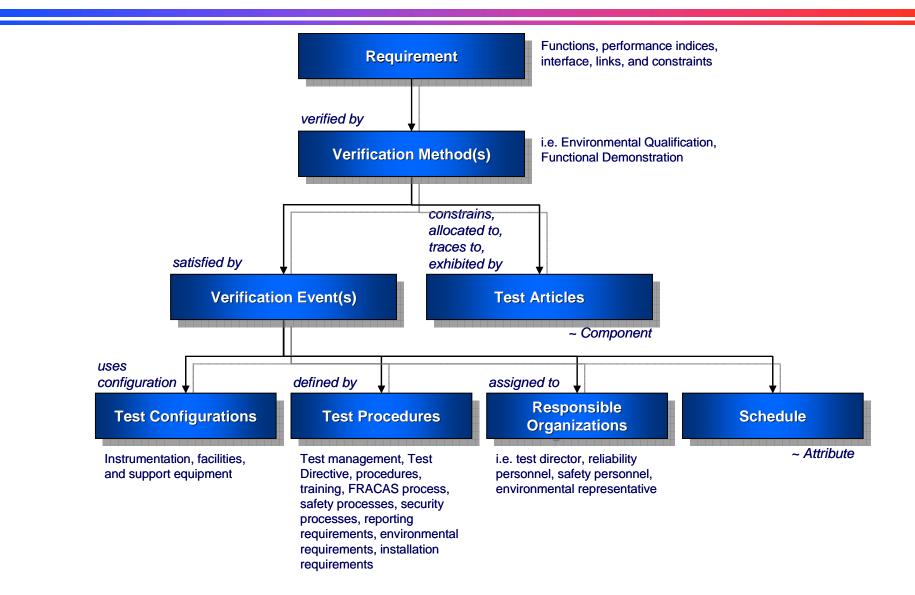
AAG Physical Hierarchy

- System Model used by General Atomics to
 - Ensure flow down and traceability to procurement specification
 - Enabled traceability to trade studies and design analysis
 - Functional Baseline for Initial FMECA
 - Produced:
 - System Specification
 - Subsystem Specifications
 - Components Specifications
 - Software Requirements Specifications
 - Test and Evaluation Plans

- The AAG program has applied a cohesive integration and test strategy to verify the engineering development of the system.
 - Component, subscale, and prototype level to verify concepts, validate the developmental arrestment model, and reduce risks
 - Integration and reliability testing will reduce risk through integration of major components
 - Environmental tests to ensure the system is qualified for the intended operational environment
 - System level tests at Jet Car Test Site and Remote Aircraft Landing Site


- For the AAG program,
 - The overall test strategy is captured Test and Evaluation Master Plan (TEMP)
 - The developmental test framework is captured in the Test Evaluation Plans (TEP) in accordance with test strategy
 - Detailed procedures are captured in the individual test directives
 - Developmental tests will be documented in a series of test reports

Associating Requirements to Verification Methods


Model Based Approach Developed the Test Plans and Specification Qualification Section

Sitech Map of Elements for Test Planning

- Aggressive development schedule reduced adherence to :
 - "Bottom to top" test plan development, Integration test plans completed before component requirements (and verification plans) fully developed
 - Program leveraged integrated tests for the verification of a majority of the component requirements
- Through the process of assigning requirements to verification methods, *the need for a substantial integrated test was clear*
 - Many requirements of component tests not achievable at component level due to design parameters beyond test fixture capability
 - Integration test phase expanded to include additional major components of the system for risk reduction

- The model-based approach increases confidence that the system design solution is on track to meet requirements
- *Discipline* of the model-based approach ensures that performance capability and reliability are designed into the system early
- Development of the TEPs provided the program and stakeholders early visibility of the derived requirements, the planned verification, and the resources required
- Managers, design engineers, systems engineers, test engineers, logistics, etc. all contributed to the same product baseline
- Early identification of verification requirements provided better scheduling and resource budgeting

