OF FLIGHT CRITICAL SYSTEMS

Herbert Hecht SoHaR Incorporated <u>herb@sohar.com</u> Michael Gomez Northrop Grumman Corp. <u>m.gomez@ngc.com</u>

AC 25.1309-1A/AMJ 25.1309

...condition which would prevent the continued safe flight and landing of the airplane [must be] extremely improbable< 1 × 10-9 per flight hour
 ...conditions which would reduce the capability of the airplane or the ability of the crew to cope with adverse operating conditions [must be] improbable. < 1 × 10-5 per flight hour, less for severe conditions

"In general, the means of compliance described in this AC are not directly applicable to **software assessments** because it is not possible to assess the number and kinds of software errors, if any, that remain after the completion of system design, development and test."

Refers for software to RTCA DO-178B

SOFTWARE CERTIFICATION DO-178B

- 1. SYSTEM ASPECTS
- 2. SOFTWARE LIFE CYCLE
- **3.** SOFTWARE PLANNING PROCESS
- **4.** SOFTWARE DEVELOPMENT PROCESS
- **5.** SOFTWARE VERIFICATION PROCESS
- 6. SOFTWARE CONFIGURATION M'GMNT PROCESS
- 7. SOFTWARE QUALITY ASSURANCE PROCESS
- 8. CERTIFICATION LIAISON PROCESS

NOT TRACEABLE TO FAR 25.1309

FROM Y2K EFFORTS

"The main line software code usually does its job. Breakdowns typically occur when the software exception code does not properly handle abnormal input or environmental conditions – or when an interface does not respond in the anticipated or desired manner."

C. K. Hansen, *The Status of Reliability Engineering Technology* 2001, Newsletter of the IEEE Reliability Society, January 2001

4-UNIVERSITY EXPERIMENT

TEST RESULTS W/ ACCELEROMETER. FAILURES

PROGRAM TO FURNISH ORTHOGONAL OUTPUT FROM 6 NON-ORTHOGO-NAL ACCELEROMETERS

PROGRAM SHOULD TOLERATE UP TO **THREE** ACCELEROMETER FAILURES

No. accel. failed	Total tests	Tests failed	Failure fraction
1	134,135	1,268	0.01
2	101,151	12,921	0.13
3	143,509	83,022	0.58

ECKHARDT, CAGLAYAN ET AL., AN EXPERIMENTAL EVALUATION OF SOFTWARE REDUNDANCY, TSE, 7/91

WHAT CAN BE LEARNED?

- EXCEPTION CONDITIONS, AND PARTICULARLY MULTIPLE EXCEPTION CONDITIONS, ARE LIKELY TO BE OMITTED
 IN PROGRAM DESIGN
 IN PROGRAM TESTING
 TEST CASES INVOLVING MULTIPLE EXCEPTIONS ARE
 - MORE DIFFICULT TO CONSTRACT
 - MUCH MORE PRODUCTIVE IN DETECTING PROGRAM WEAKNESSES

THE CRITICAL AREA

AIRCRAFT VULNERABILITIES

SOFTWARE PERFORMANCE

REQUIRED: INVOLVE SYSTEM ENGINEERING

FMEA AS THE BRIDGE

SYSTEM ENGINEERING: – END LEVEL FAILURE EFFECTS - SEVERITY BOTH - DETECTION METHODS - COMPENSATION (MITIGATION) SOFTWARE ENGINEERING - FAILURE MODES **– LOW LEVEL FAILURE EFFECTS**

FMEA WORKSHEET

FAILURE MODE AND EFFECTS ANALYSIS

SYSTEM______

DATE______OF_____ SHEET_____OF_____ COMPILED BY______ APPROVED BY______

MISSION_____

				MISSION PHASE	FAILURE EFFECTS				FAILURE		
NUMBER	IDENTIFICATION (NOMENCLATURE)	FUNCTION	FAILURE MODES AND CAUSES	OPERATIONAL	LOCAL	NEXT HIGHER LEVEL	END EFFECTS	CLASS	COMPENSATING PROVISIONS	DETECTION	REMARKS
		IDENTIFICATION	IDENTIFICATION FUNCTION	IDENTIFICATION FUNCTION AND CAUSES	DENTIFICATION FUNCTION AND CAUSES OPERATIONAL	IDENTIFICATION ITEM/FUNCTIONAL FUNCTION FUNCTION FUNCTION AND CAUSES OPERATIONAL LOCAL	DENTIFICATION ITEM/FUNCTIONAL FUNCTION FAILURE MODES OPERATIONAL NEXT	DENTIFICATION ITEM/FUNCTIONAL FUNCTION FAILURE MODES OPERATIONAL NEXT FUNCTION	DENTIFICATION ITEM/FUNCTIONAL FUNCTION FAILURE MODES MISSION PHASE/	DENTIFICATION ITEM/FUNCTIONAL FUNCTION FAILURE MODES MISSION PHASE/	IDENTIFICATION ITEM/FUNCTIONAL FUNCTION FAILURE MODES MISSION PHASE/

IDENTIFICATION CAUSES AND EFFECTS DISPOSITION

IDENTIFICATION

IDENTIFICATION NUMBER, E. G. 1.2.1.4
MAJOR COMPONENT 1
ASSEMBLY 2
SUBASSEMBLY 1
PART 4
ITEM (PART NAME)
FUNCTION

FAILURE CAUSES AND EFFECTS

FAILURE MODE AND CAUSE

- FAILURE MODE (FUNCTIONAL) E. G., NO OUTPUT

1

- FAILURE CAUSE (ENGINEERING) E. G., OXIDE FAILURE 2. BOND BREAKAGE
- MISSION PHASE, OPERATIONAL MODE
- EFFECTS
 - LOCAL
 - NEXT HIGHER LEVEL
 - END EFFECTS

SEVERITY CLASSIFICATION BASED ON END EFFECTS

DISPOSITION

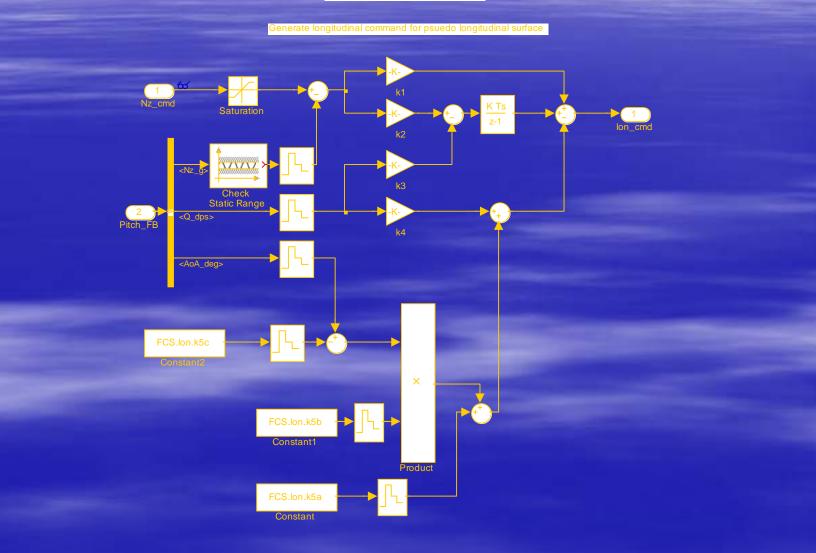
FAILURE DETECTION METHOD

 CAN BE AT SEVERAL LEVELS

 COMPENSATION PROVISIONS

 REDUNDANCY, RETRY, BACK-UP MODE

 REMARKS

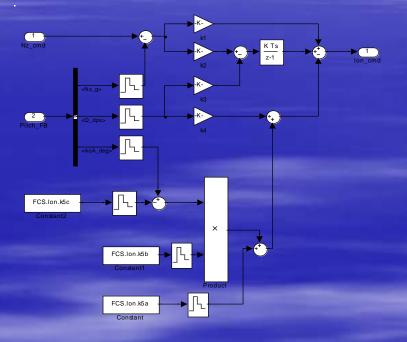

 WHAT IS THE EFFECT IF BACK-UP FAILS

MOCET

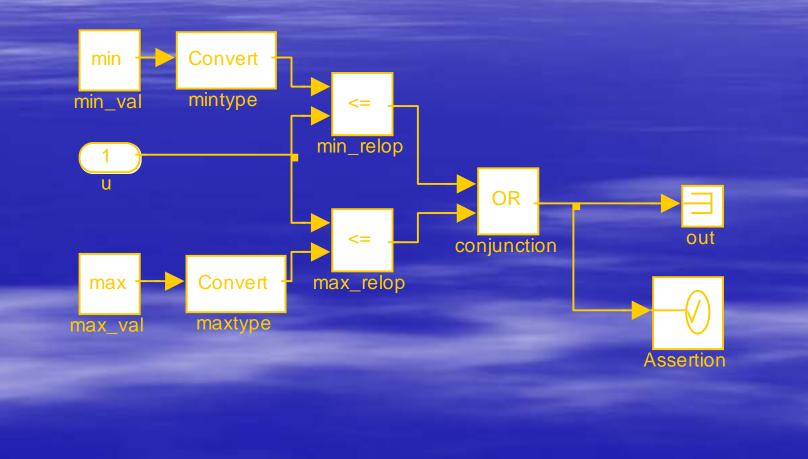
Model-based Certification Tool
Computer Aided generation of FMEA
Evaluation of robustness provisions
TPNs for exploration of timing problems

LONGITUDINAL CONTROL

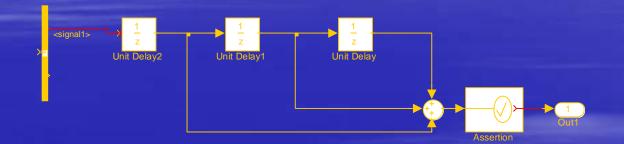
Longitudinal FCS



MODEL STRUCTURE


_	Block {	
•	BlockType	Constant
-	Name	"Constant1"
U.	Position	[155, 496, 240, 524]
_	Value	"FCS.lon.k5b"
.	}	
-	Block {	
-	BlockType	Constant
•	Name	"Constant2"
-	Position	[35, 411, 120, 439]
•	Value	"FCS.lon.k5c"
-	}	
•	Block {	
•	BlockType	DiscreteIntegrator
•	Name	"Discrete-Time\nIntegrator"
•	Ports	[1, 1]
•	Position	[395, 160, 430, 200]
	ShowName	off
•	IntegratorMethod	"Forward Euler"
•	ExternalReset	"none"
-	InitialConditionSource "internal"	
-	SampleTime	"FCS.T_Samp"
_	}	
L	Block {	
-	BlockType	Product
_	Name	"Product"
-	Ports	[2, 1]
-	Position	[310, 383, 345, 552]
-	InputSameDT	off
•		

PARSED BLOCKS


-	1	longitudinal_claw
-	1.1	Lon
-	1.1.1	Lon
•	1.1.1.1	Nz_cmd
•	1.1.1.2	Pitch_FB
•	1.1.1.3	Bus\nSelector
-	1.1.1.3.1	<nz_g></nz_g>
-	1.1.1.3.2	<q_dps></q_dps>
-	1.1.1.3.3	<aoa_deg></aoa_deg>
•	1.1.1.4	Constant
•	1.1.1.5	Constant1
•	1.1.1.6	Constant2
-	1.1.1.7	Discrete-Time\nIntegrator
-	1.1.1.8	Product
_	1.1.1.9	Sum
-	1.1.1.10	Sum1
-	1.1.1.11	Sum2
-	1.1.1.12	Sum3
-	1.1.1.13	Sum4
-	1.1.1.14	Sum5
•	1.1.1.15	Zero-Order\nHold1

EXAMPLE OF DETECTION CHECK RANGE

EXAMPLE OF DETECTION DETECT ZERO OUTPUT

FMEA BY MOCET

ID	Item/Function	Failure Mode	Local Effect	Detection
1.1.1.1	N_z	a. Absent	No output	N-wait*
	Command	<mark>b.</mark> Jump	Hi rate	Chck rate*
		c. > Limit	None (limiter)	
1.1.1.2	Pitch FB	See 1.1.1.3		
1.1.1.3	Bus selector	Stuck	No FB	N-wait*
1.1.1.3.1	N_z FB	a. Absent	No signal	N-wait
		<mark>b. Jump</mark>	Hi rate	Chck rate
		c. Xtrm value	Hi/lo signal	Chck range
1.1.1.7	Product	a. Absent	No signal	N-wait*
		<mark>b.</mark> Jump	Hi rate	Chck rate*

* Not in current model

CONCLUSIONS

 SOFTWARE CERTIFICATION BY DO-178B

 IS UNNECESSARILY COSTLY
 DOES NOT ADDRESS BASIC CERTIFICATION REQUIREMENTS

 MOCET WILL

 SIMPLIFY THE CERTIFICATION EFFORT
 ADDRESSES CERTIFICATION REQUIREMENTS MORE DIRECTLY

ACKNOWLEDGEMENT

MOCET is being developed under an AFRL contract for which Dave Hohman and Ray Bortner are the technical points of contact