

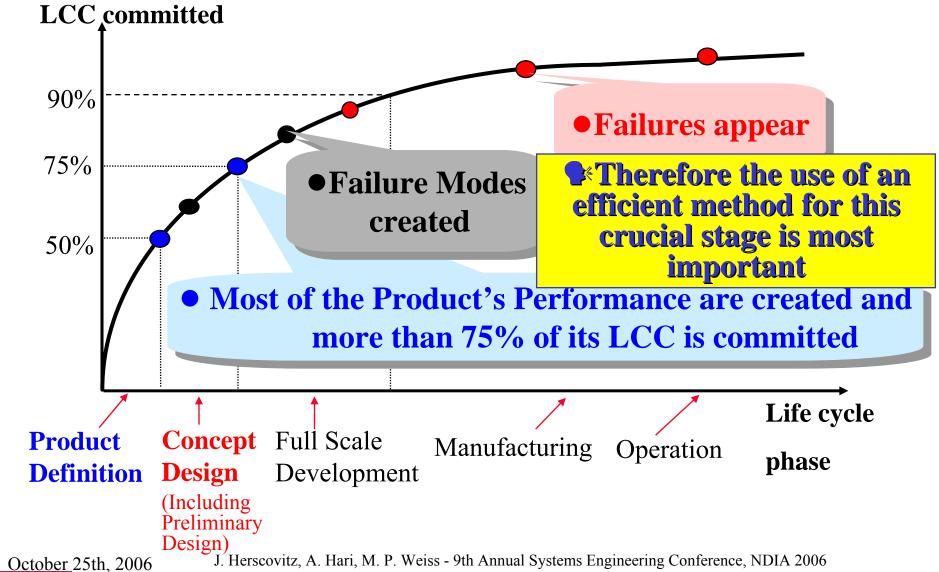

How to Create and Select High Value, Innovative, Competitive and Economic Concepts for New Systems?

October 25th, 2006 J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

Jacob Herscovitz RAFAEL Space Systems Directorate Haifa, Israel Dr. Amihud Hari Design Speedovation Israel Prof. Menachem P. Weiss TECHNION Faculty of Mech. Eng. Haifa, Israel

Topics

Introduction


- Overview of ICDM
- •Case Study
- Research
- Application of ICDM
- Conclusions

<u>Octob</u>er 25th, 2006

The Early Phases of the System Life Cycle Process are the Most Critical to the Success of a New System

Common difficulties in the Conceptual Design Phase:

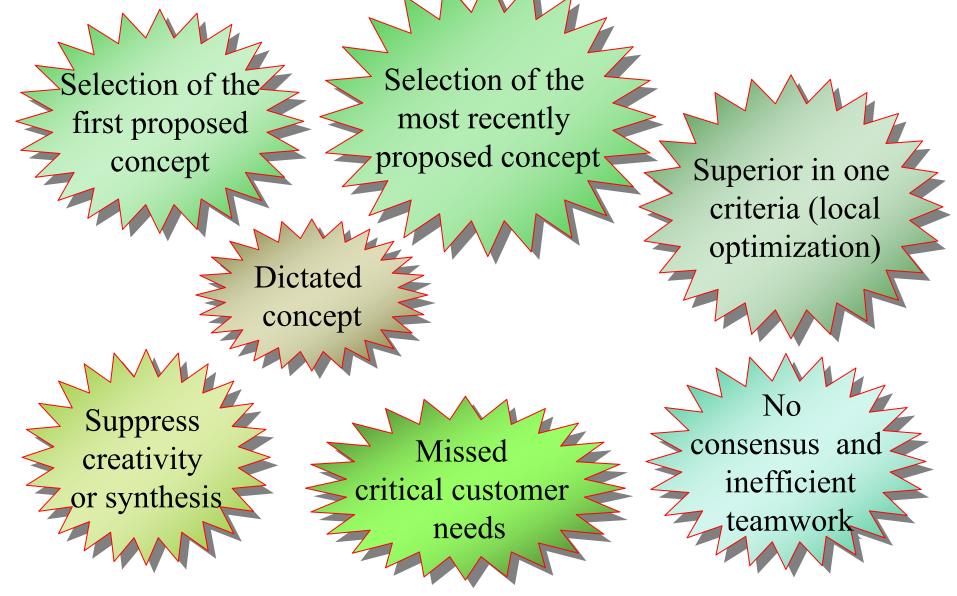
No adequate team assigned to the project Investments are very risky

Resources not

completely allocated

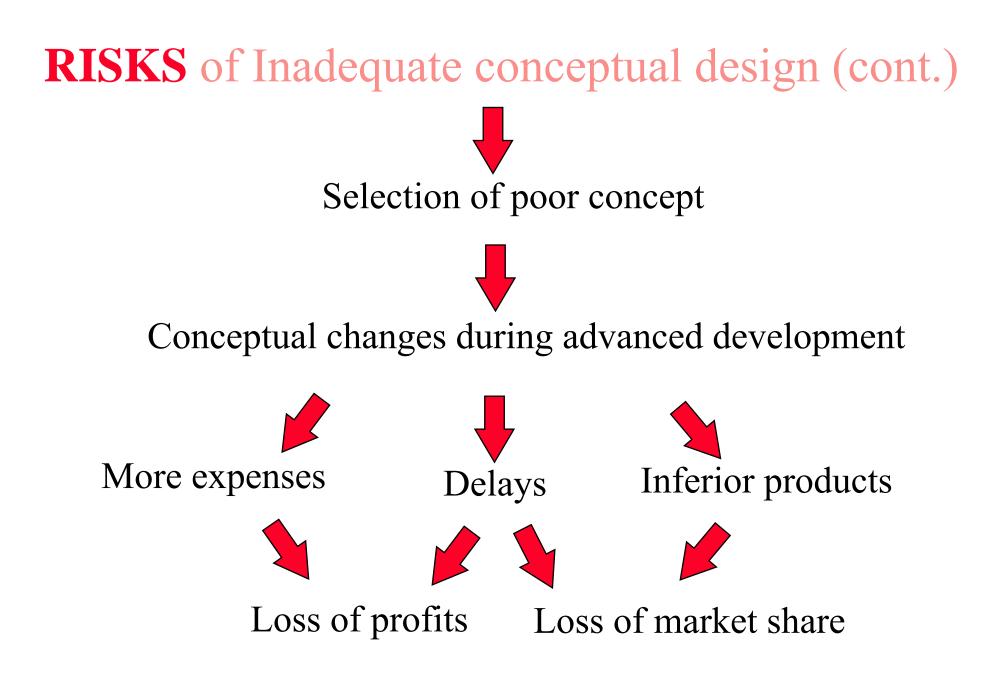
Time pressure

Evaluation of several concepts in parallel


Decisions making with fuzzy

information

Working under pressure...


October 25th, 2006

RISKS of Inadequate Conceptual Design

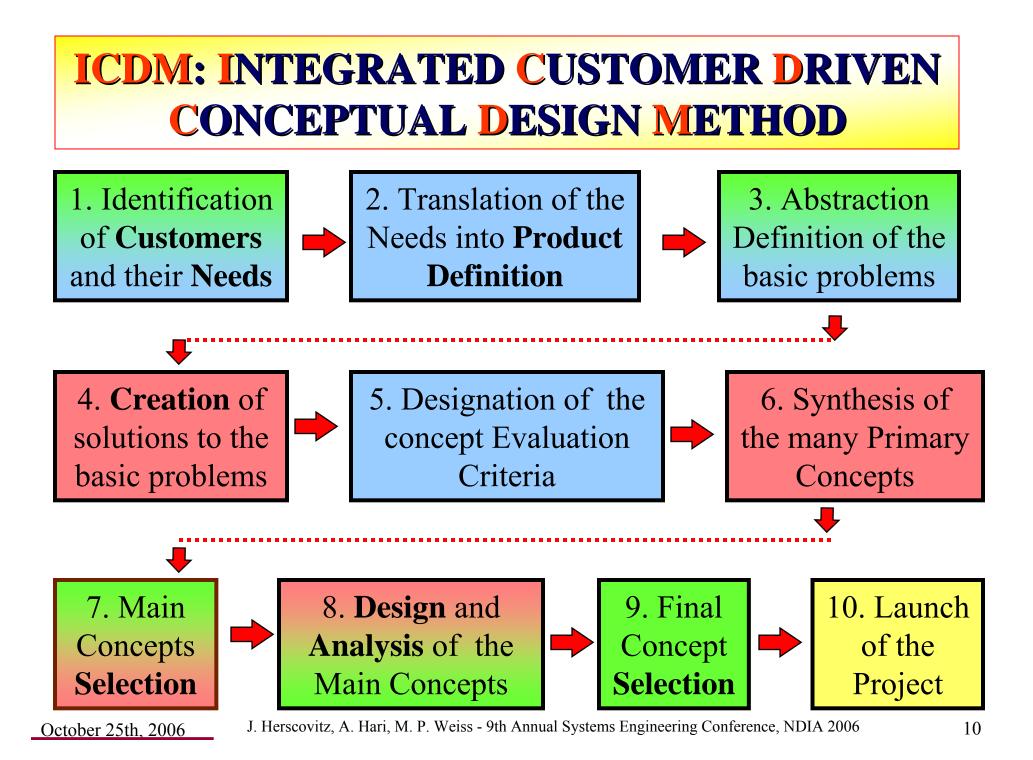
October 25th, 2006

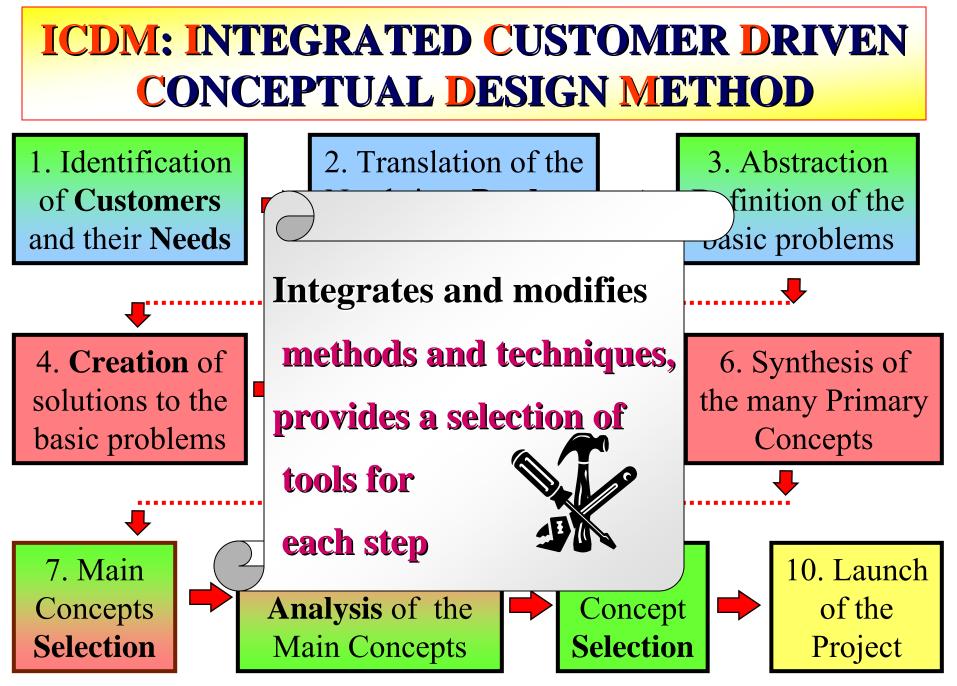
J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

Topics

Introduction

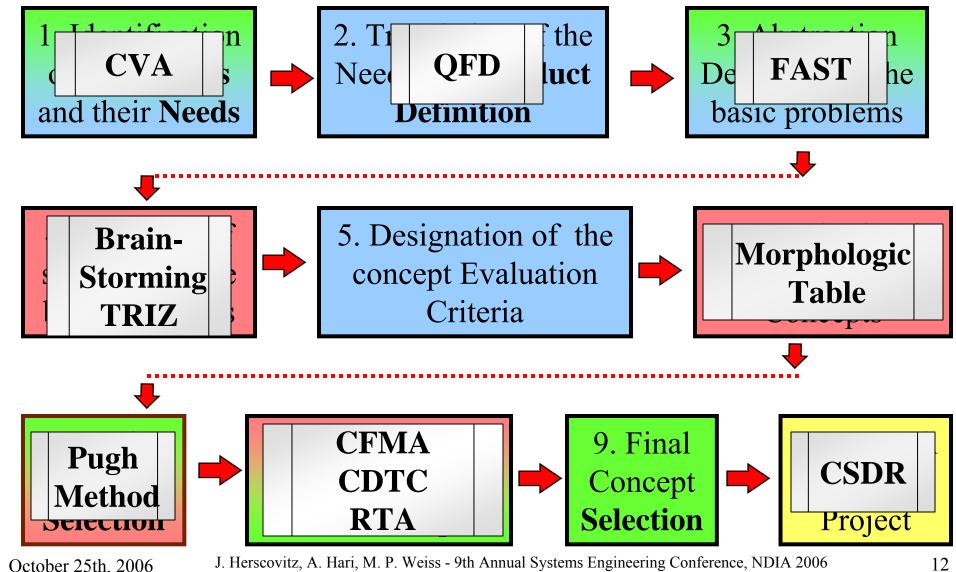
Overview of ICDM


- Case Study
- Research
- Application of ICDM
- Conclusions



ICDM: INTEGRATED CUSTOMER DRIVEN CONCEPTUAL DESIGN METHOD

Covers the entire process of the conceptual design and preliminary design stages


October 25th, 2006 J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

October 25th, 2006

ICDM: INTEGRATED CUSTOMER DRIVEN CONCEPTUAL DESIGN METHOD

ICDM: INTEGRATED CUSTOMER DRIVEN CONCEPTUAL DESIGN METHOD

*****Tailoring Guidelines:

ICDM has an open architecture, is flexible and can be **tailored** to the unique needs of each case and organization.

***** The Human (soft) Aspect:

ICDM Provides the means to improve **motivation** and **creativity** of new product development teams

***** Design Quality Measurement (DQM)

ICDM includes an on-line customer value based **DQM** system

Topics

- Introduction
 Overview of ICDM
 Case Study
- Research
- Application of ICDM
- Conclusions

Step 1: Identification of Customers and their Needs

Problem Definition:

Due to repetitive cases in which anti-terrorist or infantry forces were injured by rifle shooting, from friendly forces, a need emerges for an identification device. This device will warn the shooter when he aims at his own forces.

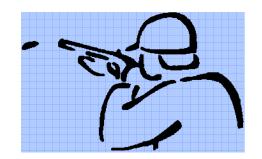
Product to Design: "*PIFF2000*" Personal IFF (Interrogator of Friend or Foe)

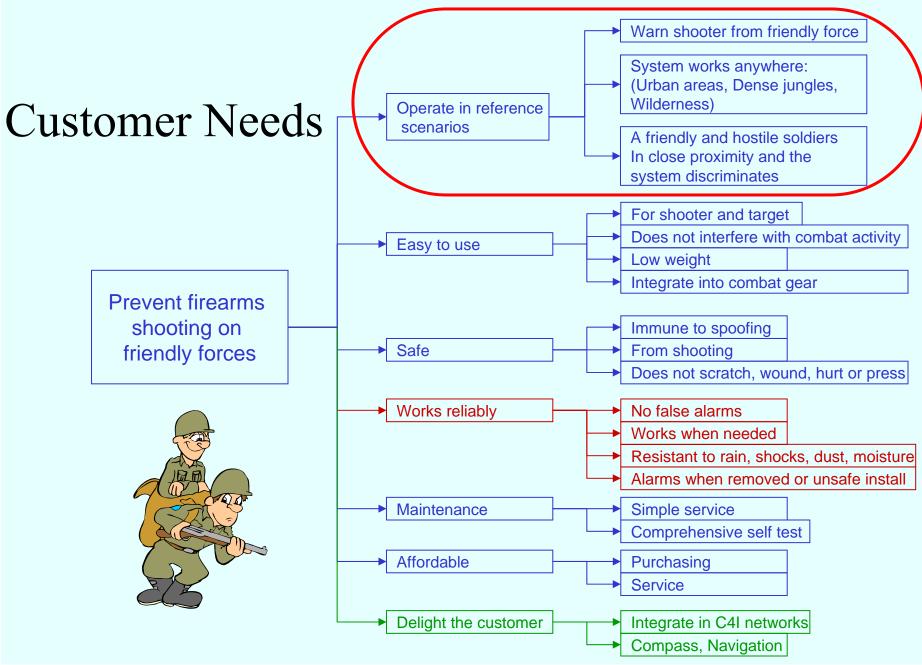
Customers

The users

- Infantry combat teams
- Anti-terror squads

Stakeholders (Army):


- purchasing authorities
- logistics support authorities
- combat doctrine authorities


Stakeholders (Civil):

• Investors

• Regulatory & environment authorities

J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

Step 2: Translation of the Needs into Product Definition

	unit:	3 Operation Range	Autonomy	B. Mounting time	CD M Coptical radiation	≳ S Electromagnetic radiation	% False Alarm Rate (FAR)	∯ Maintainance	⇔ Price	국 Continuous Operation	3 Resolution	Volume v_3	م Weigth	Importance	Binoculars	Wireless comm.
/	Warn friend		0			0								5	2	2
	Work anywhere				0	0				Δ		\bigtriangleup	Δ	5	5	5
	Discrimination	0			Δ	Δ			0			0	Δ	4	2	1
	FOE at LOS	•			Δ	Δ	•				0			4	1	5
	Easy in use		Δ	Δ			Δ							3	4	1
	Safe	Δ												4	5	4
	Reliable		0	\triangle			0	0	0	0	Δ			4	4	3
	Maintenance		Δ				0	0	Δ	Δ		0	\triangle	1	5	3
	Affordable													2	5	3
1	Rel. Importance	99	76	18	104	74	180	33	43	69	97	47	37	877		
	Rel. Imp. %	11.3	8.7	2.1	11.9	8.4	20.5	3.8	4.9	7.9	11.1	5.4	4.2	100		
	Rank	3	5	12	2	6	1	11	9	7	4	8	10			
	Contribution:	Δ	weak	<mark>(1)</mark>) me	dium	(3)	stro	ng (9)							

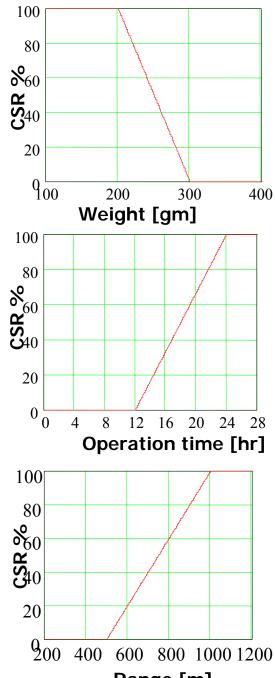
Performance Based Specification Decision Table

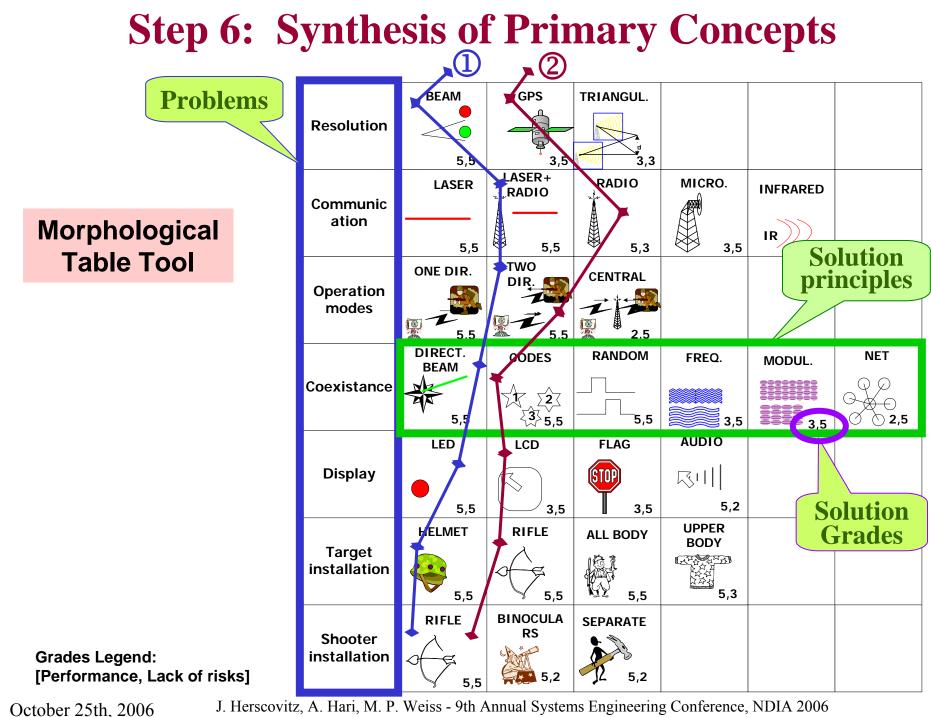
	Spec	Weight	Trade offs	Wireless	Binoculars	Target value	Diff.	Cost	TTM	Concept
1	False Alarm Rate	20.5		N/A	N/A	2.10-4	•	•	0	No
2	Optical Radiation	11.9	1	0.0	0.0	0.5	Δ	Δ	Δ	Yes
3	Range	11.3	2	comply	comply	1000.0	Δ	0	0	Yes
4	Resolution	11.1		bad	bad	20.0	•	•	0	Yes
5	Autonomy	8.7		yes	yes	yes	Δ	Δ	Δ	No
6	EM Radiation	8.4	1,3	Over spec.	0.0	0.2	Δ	Δ	Δ	No
7	Cont. Operation	7.9	1,2,6	20.0	20.0	24.0	•	•	Δ	No
8	Volume	5.4	7,4	large	500.0	200.0	0	Δ	Δ	No
9	Price	4.9	1,2	expensive	cheap	750.0	0	0	0	No
10	Weight	4.2	7,8	large	500.0	200.0	0	0	Δ	No
11	Maintenance	3.8	9,5,2	moderate	cheap	50.0	0	Δ	Δ	No
12	Mounting time	2.1	8,9,11	N/A	N/A	5.0	Δ	Δ	Δ	No

October 25th, 2006

Step 3: Abstraction, Definition of the Basic Problems

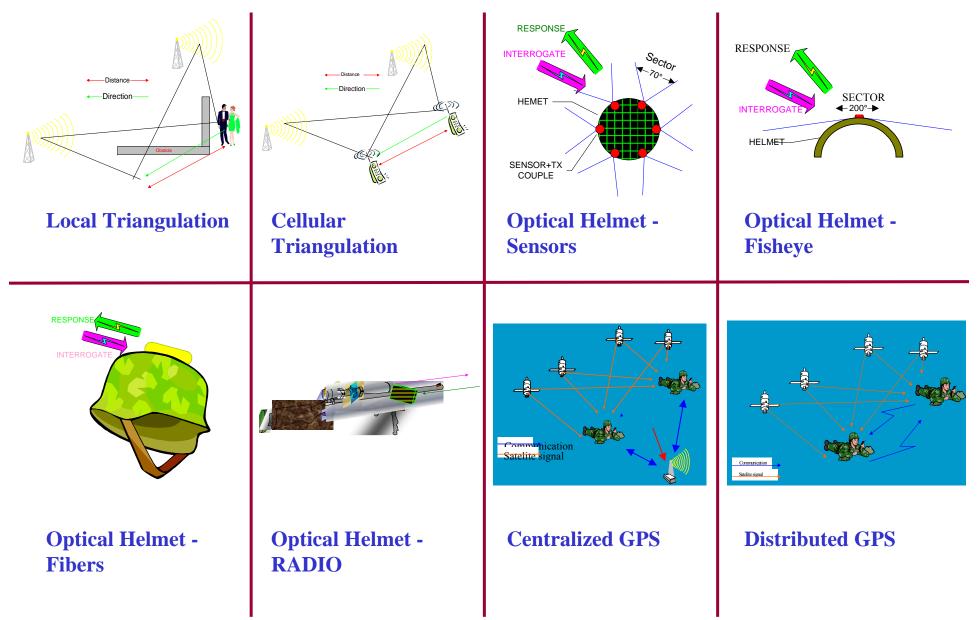
STEP 4: CREATING SOLUTIONS TO THE BASIC PROBLEMS


		Potential Perform	hance Lack of Prob	dev. ems Selection
Problem	Solution	Poerte	Larob Prob	selec
Resolution	ElectroOptics	5	5	++
	ElectroMagnetics	2	2	-
	GPS	5	3	+
	Triangulation with	3	3	+
	directional ant.			
Communication	Radio	3	5	++
Туре	Microwave	5	3	++
	Optics (laser)	5	5	++
Display	Graphics LCD	5	3	++
	LED	5	5	++
	Flag	5	3	++
	Speaker	2	5	+
	Buzzer	2	5	+
	Vibrator	2	3	-


October 25th, 2006

STEP 5: EVALUATION CRITERIA

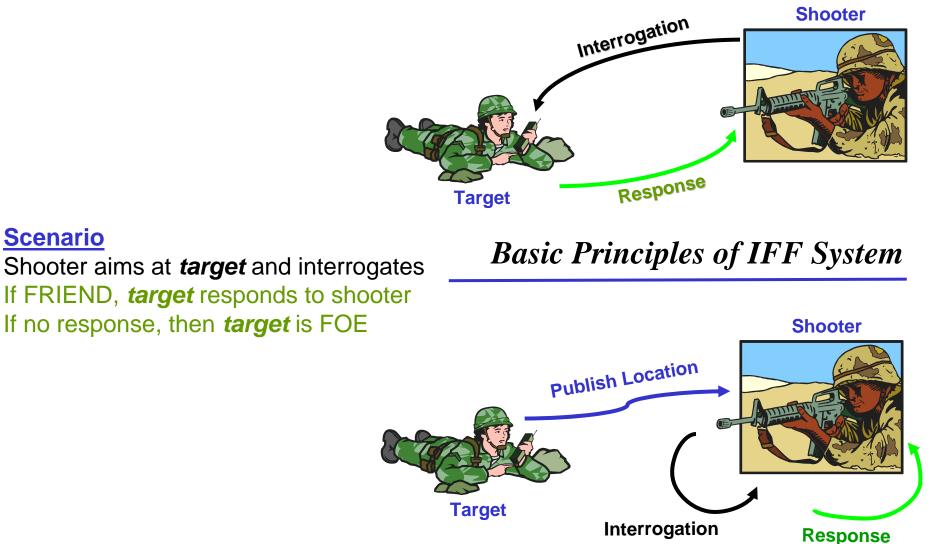
#	Criteria	<u>A</u>	<u>B</u>	Target value (QFD)
1	Technology gaps	+	+	
2	Mission reliability		+	0.95
3	FAR		+	2-10-4
4	Operation range	+	+	1000 m
5	Soldier suitability	+	+	
6	Radiation	+	+	5e ⁻⁷ mj/cm ²
7	Resolution	+	+	20 m
8	Operation cost		+	50 \$/month
9	Volume/ weight		+	200 cc / 200 g - target 200 cc / 200 g - shooter
10	Continuous operation		+	24 hours
11	Cost		+	750\$ total (250+500)
12	Manufacturing capability	+	+	
13	Installation, removal and ease of use	+	+	2 min preparation
14	Customer attraction		+	
15	Serviceability	+	+	


October 25th, 2006

Step 7: Evaluation of the primary *PIFF* **concepts using PUGH method**

Concept Criterion	Local Triangulation	Cellular Triangulation	Optical Helmet - Sensors	Optical Helmet - Fisheye	Optical Helmet - Fibers	Optical Helmet - Radio	Centralized GPS	Distributed GPS
Technology gaps	D	S	S	S	S	S	S	S
Performance:								
Operation range	А	S				-	S	S
Soldier suitability		S	+	+	+	+	S	++
Radiation	Т	S				-	S	S
Resolution		-	++	+ +	++	++	+	+
Manufacture capability	U	S	+	+	+	+	S	+
Inst., rem. and ease of use		S	-	-	-	-	S	+
Serviceability	М	S	S	S	S	+	S	+
Σ +		0	4	4	4	5	1	6
Σ-		1	5	5	5	3	0	0
Total		-1	-1	-1	-1	2	1	6

The Final Concepts

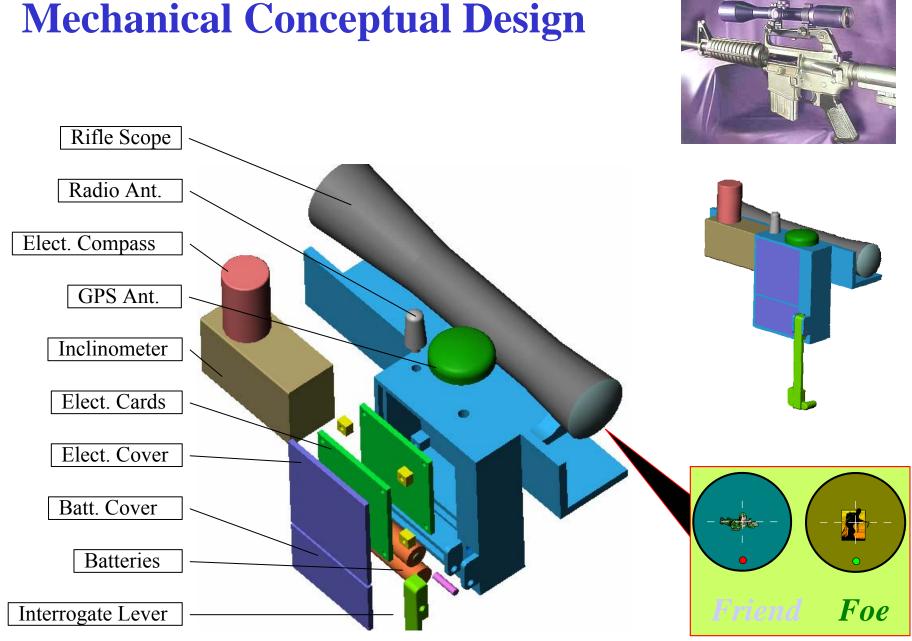


ICDM: INTEGRATED CUSTOMER DRIVEN CONCEPTUAL DESIGN METHOD

8. **Design** and **Analysis** of the Main Concepts

October 25th, 2006

Conceptual Architecture and Operation Logic Design



Architectural Concept in Distributed GPS PIFF

October 25th, 2006

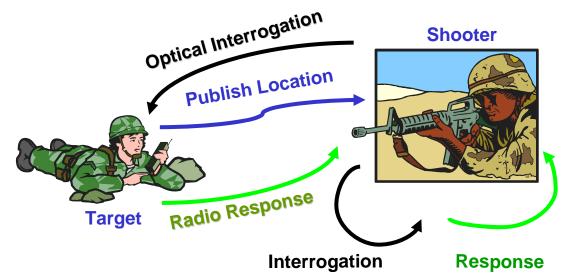
Distributed GPS IFF – Principle of Operation

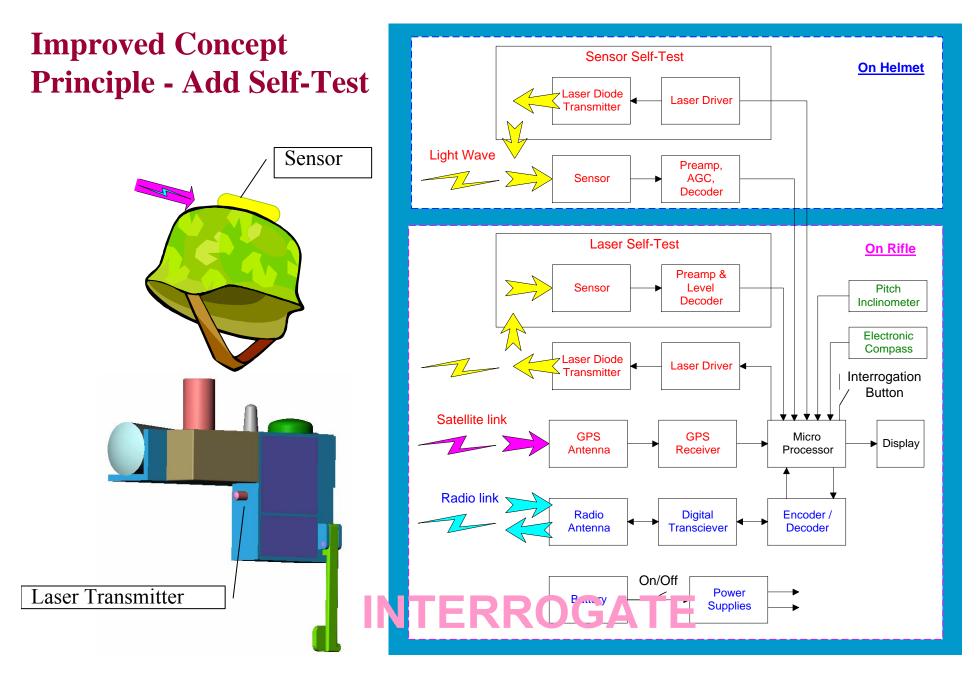
October 25th, 2006

October 25th, 2006

CFMA Table for "Interrogation" Function

Failure mode	Failure Result	S	Failure causes	F	Ways to detect	D	SFD		New SFD
No Transmission	Mission Failure	8	Weak Batt.	1	Data sheet		8		
		8	Faulty PS	3	Samples testing	4	96	Env. Test for samples. D=2	48
		6	Optic. Dirt	7	Test prototype	5	280	Add protectors: F=5 Detector Self test: S=3 Build a prototype: D=4	60
		8	Faulty Switch	4.	Test prototype	Ę	160	2 switches: F=1	40
		8	Faulty Trans.	4	Test first batch	4	160	Continuous self test: F=1 Env. Test for prototype: D=2	16
		ŝ	Faulty PC	ĆĴ	Test first batch		1:20	Add watch-dog: F=1 Env. Test for prototype: D=2	16
Weak Signal	Perform. Degrad.	6	Faulty Trans.	5	Test first batch	5	150	Self test: F=1 Env. Test for prototype: D=2	12
		6	Optic Dirt	10	Test similar systems	7	420	Add protectors: F=5 Detector Self test: S=3 Build a prototype: D=4	60
No GPS Fix	Mission Failure	8	No vis. Sat.	6	Analysis and Simulation	2	96	Manual location	72

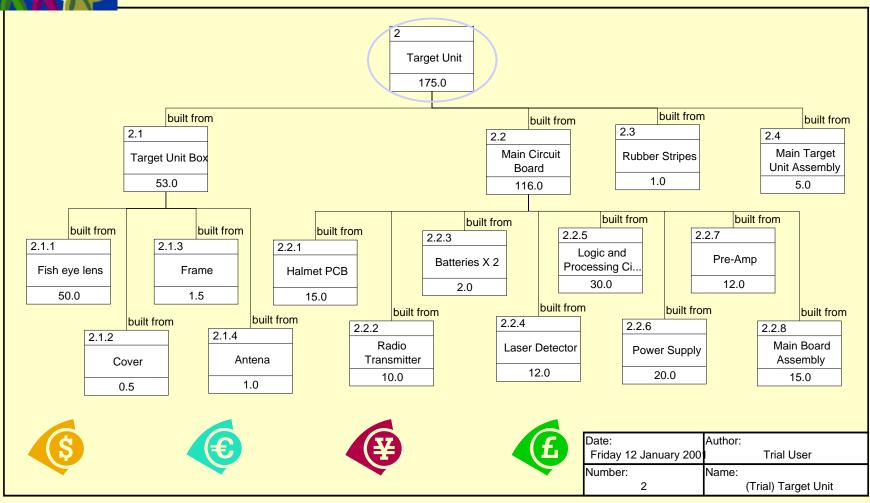


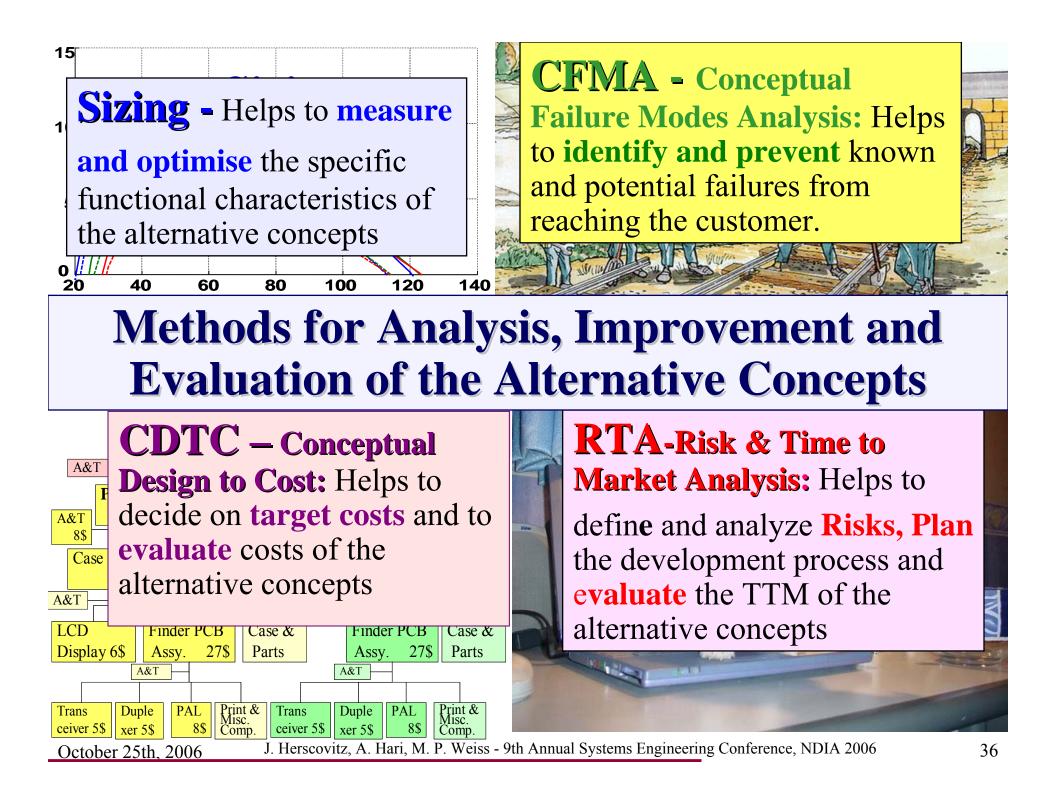

October 25th, 2006

Improved Design After CFMA

Insert REDUNDANT mechanisms:

- Original: Geolocation with GPS
- Add: Optics interrogation with Radio response
- Combined logic: perform an AND check from both sub-systems. Result: Improvement in RELIABILITY (both Type 1 and Type 2) Improved redundant performance:
 - In urban areas, GPS may not receive adequately. Laser will perform.
 - In open battlefield, Laser beam may be obstructed by smoke, dust, etc. GPS will perform.



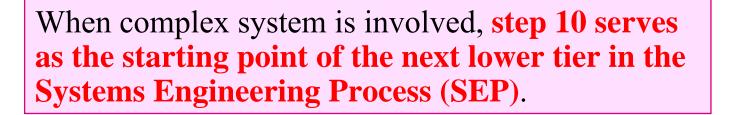


October 25th, 2006

Cost Estimation

Step 9: Final Concept Evaluation

	Spec	Weight	Target value	Result Achieved	CSR
1	FAR	20.5	2.10-4	10-6	100
2	Radiation .Opt	11.9	510 ⁻⁵ [J/cm ²]	<15 µJ/cm ²	100
3	Range	11.3	1000 [m]	1000	100
4	Resolution	11.1	20 [m]	< 20 m	100
5	Autonomy	8.7	Full	Full	100
6	Radiation .EM	8.4	0.2 [w/cm ²]	0.024	100
7	Cont. Operation	7.9	24 [h]	20.0	60
8	Volume	5.4	200 [cm ³]	245	70
9	Price	4.9	750 [\$]	454	100
10	Weight	4.2	200 [g]	200	100
11	Maintenance	3.8	50 [\$/month]	50	100
12	Mount / Dismount	2.1	5 [min]	< 5	100


Total: 94.5%

October 25th, 2006

Step 10: Project Launch

Goals:

- 1. To approve the specification and the concept
- 2. To approve the resources required for the full scale development.



00

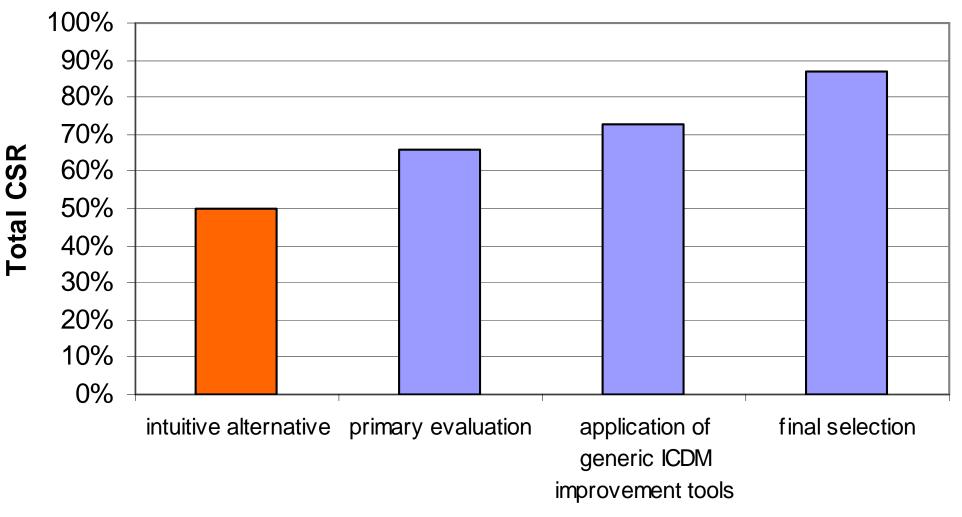
= =

Topics

Introduction
Overview of ICDM
Case Study
Research
Application of ICDM
Conclusions

29 new product development teams (129 members) were instructed to apply the **ICDM** methodology step by step and evaluate the results by the **DQM** (Design Quality measurement) system.

Which approach created higher CSR (better concepts)

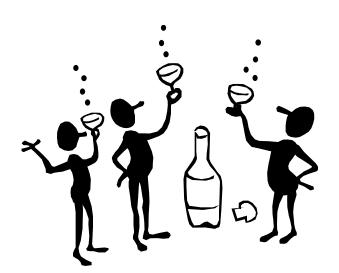

Intuitive Concept

Or concept created by using **ICDM**

?

October 25th, 2006

• The quality of a concept achieved by **ICDM** was on the average **1.75 times better** than the **intuitive alternative**.



The Paradigm Shift (1)

The Traditional Paradigm: Intuitive concepts are the best

The New Paradigm: **Methodology** can help in creating **better** concepts

What types of metrics were used by most of the teams

Safety

Functional

Design level / aesthetics

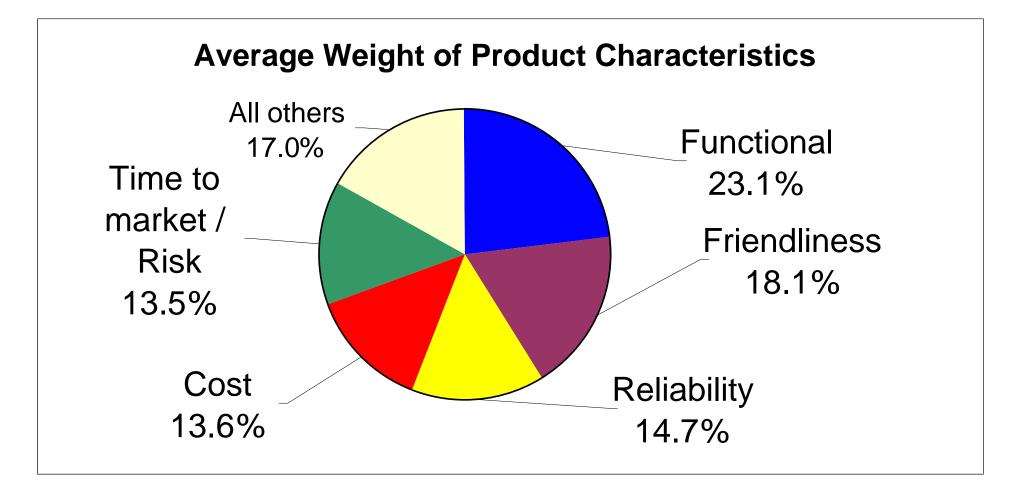
Interface and compatibility

Environment Friendliness

Manufacturability

Time to market / Risk

Reliability


Maintainability & Support

Friendliness

Operation time

October 25th, 2006

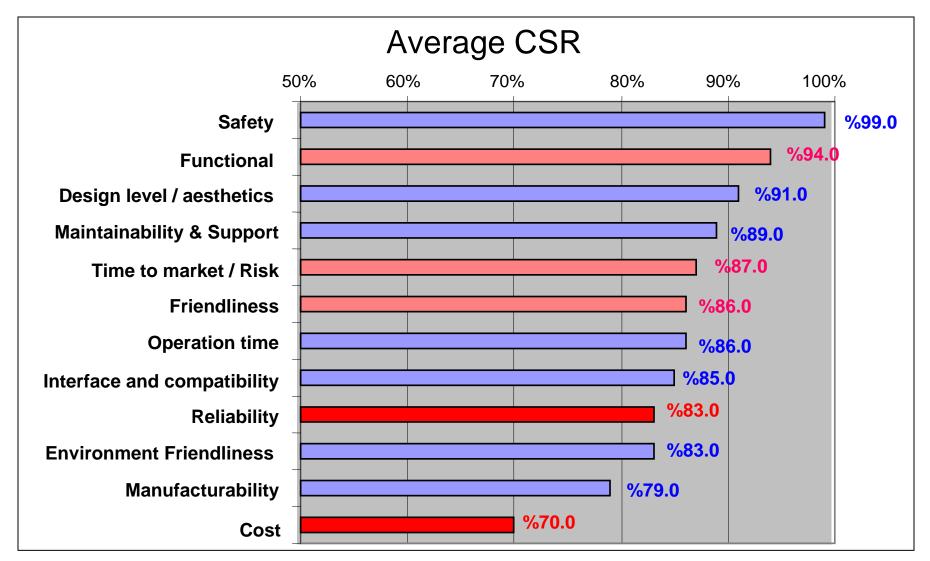
2 The 5 metrics that were used by most of the teams covered, on average, more than 80% of the customer satisfaction.

- •Which type of metrics achieved the highest Customer Satisfaction Rating (CSR) ?
- •Which type of metrics achieved the lowest Customer Satisfaction Rating (CSR) ?
- Safety
- Functional
- Design level / aesthetics
- □Interface and compatibility
- Environment Friendliness

Manufacturability

□Time to market / Risk

Reliability


Maintainability & Support

Friendliness

Operation time

October 25th, 2006

The teams achieved the best scores for the functional and safety metrics on account of other Product Characteristics like: user friendliness, reliability, cost and time to market.

October 25th, 2006 J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

The Design Quality Measurement system detected cost, reliability and risk problems very early in the design process, when it is relatively easy to correct them and prevent them from reaching the customers.

5 The research revealed that the generic tool of Conceptual Failure Mode Analysis (CFMA) reduced the criticality of the selected concept by more than 50%.

The Paradigm Shift (2)

The Traditional Paradigm: **Cost**, **reliability and risk problems can be solved** only during the Full Scale Development (**FSD**) phase

The New Paradigm: We can detect , prevent and correct cost, reliability, and risk problems during the Conceptual Design Phase (CDP)

October 25th, 2006

Topics

Introduction
Overview of ICDM
Case Study
Research
Application of ICDM
Conclusions

October 25th, 2006

Special Application of ICDM

Formal SE requires time and resources which are not always available and therefore SE processes are sometimes totally skipped

Two options for short and cost effective processes

•Agile workshop (Agile SE): 2-3 Month

Steps 1,2	Steps 3 - 7	Step 8	Step 9	Step 10
1-4 weeks	2-5 days	1-6 weeks	1-2 days	2 half days

• Slim workshop (Slim SE): 5 Days !!!

Day 1:	Day 2:	Day 3:	Day 4:	Day 5:
Needs	Benchmark	Solutions	Design	Selection
and	and	and	and	and
Requirements	Abstraction	Concepts	Analysis	Verification

October 25th, 2006 J. Herscovitz, A. Hari, M. P. Weiss - 9th Annual Systems Engineering Conference, NDIA 2006

- One day ICDM overview
- **Two days workshop on new product definition (NPD)** and Conceptual Design
- Two days workshop on ICDM methodology and tools
- 5 days class action learning workshop ICDM applied on the company project
- One semester academic graduate and undergraduate course on ICDM

Conclusion

VHS

ICDM - Integrated Customer Driven Conceptual Design Method.

ICDM is a proven method for performing the critical task of conceptual design in the SE process and to make the best choice.

>

A Bit Past

msn iloo

EXTERNA PLASMA SCREEN

SILICONE

October 25th, 2006

