Headquarters U.S. Air Force

Integrity - Service - Excellence

The Next Generation of Air Force SE

NDIA 9th Annual Systems Engineering Conference San Diego, CA 25 October 2006

1

Integrity - Service - Excellence

Strategic Interests

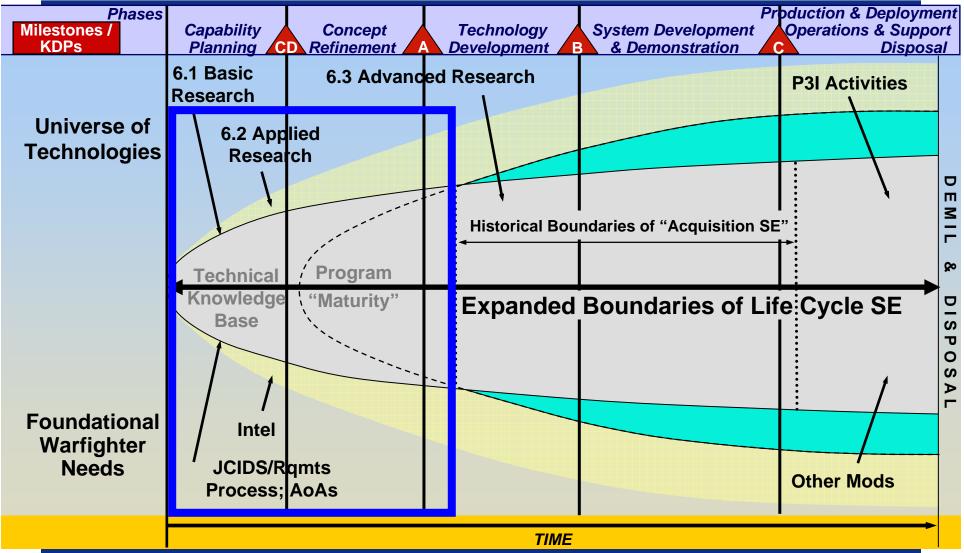
Life Cycle SE

- SE in Pre-Acquisition (Prior to Milestone / Key Decision Point A)
- Early SE Pilot
- SE for Systems of Systems (SoS)
 - ROE and Perspectives
 - Enabling Capabilities
 - Cases and Issues
- Focus Areas for SE Planning and Measuring
- SE Perspectives
- AF SE Vision

- Implement a robust engineering vision across the life cycle in all four Air Force product lines (air, space, weapons, command and control)
- Institutionalize the role of Chief Engineer as the senior technical advisor supporting the Air Force Acquisition Executive
- Grow and mentor the next generation of Air Force technical leaders

Life Cycle SE

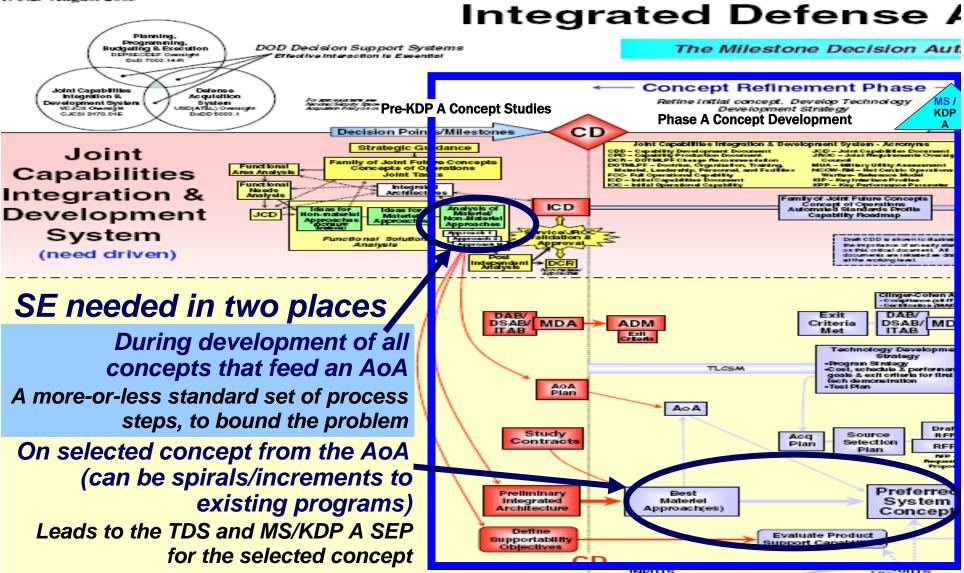
- "Life Cycle SE" encompasses the entire set of scientific, technical, and managerial efforts needed to plan, develop, acquire, integrate, verify, field, operate, maintain, improve, and sustain a system to provide a needed capability
 - Core SE Technical Processes
 - Technical Management Processes Program Protection
 - System-of-Systems (SoS)
 - System Safety and ESOH
 - Software
 - Human Systems Integration


- Specs and Standards
- Manufacturing Readiness
 - Maintenance Engineering
 - **Integrity Programs**
 - ... numerous others ...

OUTCOME: Mission Assurance -- Operational Safety, Suitability, and Effectiveness (OSS&E) -- Throughout the Product / System Life Cycle

Integrity - Service - Excellence

Life Cycle SE Focus on Pre-Acquisition



Integrity - Service - Excellence

SE in Pre-Acquisition Disciplined Application Required

r. 5.2. August 2005

SE in Pre-Acquisition

- What it is:
 - The tie between JCIDS and the Analysis of Alternatives (AoA)
 - A disciplined process to scope capability needs and develop concepts
 - The process required to do necessary groundwork for a successful AoA
 - A means to identify candidate technologies and assess their TRLs
 - Good SE
- What it is *not*:
 - An actual AoA
 - "Gaming the system" to favor a solution

SE in Pre-Acquisition Early Documentation

- Standard methodology -- "Analysis of Problem" as precursor to formal Analysis of Alternatives
 - Describes how SE processes translate capability statements into families of concept designs/approaches
 - > Trade study process
 - Key ground rules/constraints
 - Decision criteria
 - Methodology for populating knowledge base
 - Describes how operational context (architectures and military utility) drives these translations
- Basis for Technology Development Strategy
 - TDS should make up ~75% of content of SEP submitted at Milestone / Key Decision Point A for selected concept

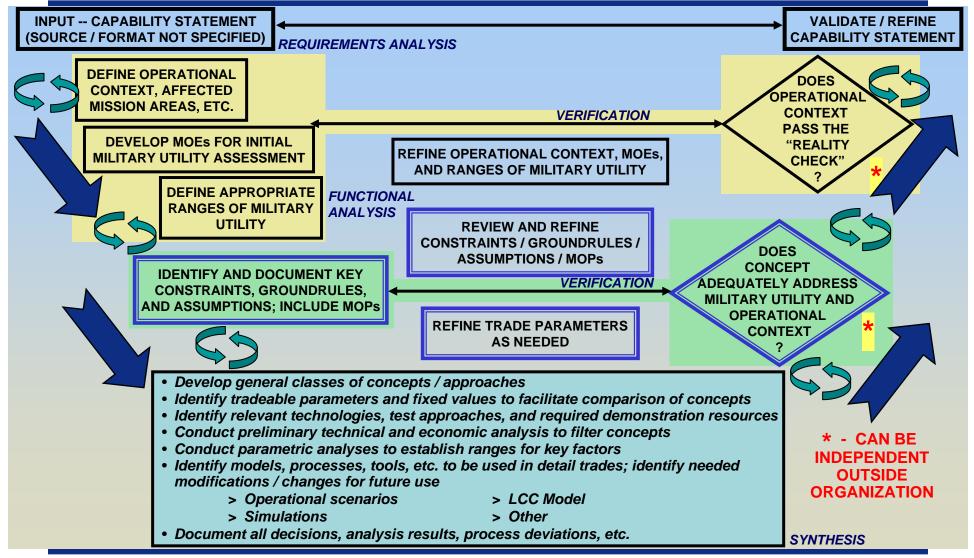
SE in Pre-Acquisition Example

- Warfighter needs the capability to cross a body of water
- Initial pass through this process yields various methods
 - Airlift
 - Bridge
 - Catapult
 - Drive around

- Drive through
- Ferry
- Tunnel
- etc.
- Further analyses offer parametric trades within a method (e.g., bridge), considering depth, width, current, etc.
 - If you build 400 yards upstream where the channel is narrower, you will only need 3 support pilings instead of 4 …"
 - If you build 1000 yards downstream where the current is slower, you'll need 5 pilings and 20% more material for the road, but you can finish 10% sooner and the span can take 15% more live load ..."

Applying this process, the Acquirer will <u>NOT</u> determine what type of bridge is best -- that comes out of the AoA

Early SE Pilot


SMC effort began June 06

- SMC/XD to select candidate need from AFSPC Mission Needs Statement library
- Selected needs will be used to validate entire process by developing at least two concepts
- Deliverables include details of each step in process diagram, guide to implementation criteria, and draft SEP for each concept
- Project will expand to AFMC Product Centers in FY07
 - Best Practices and Lessons Learned will shape policy

Early SE Pilot

Concept Development Process Diagram

Integrity - Service - Excellence

SE in Pre-Acquisition Expectations

Disciplined application of Pre-A SE will:

- Flow operational needs through concepts into programs
- Integrate the "illities" up front into concept definition
- Build a technical knowledge base that migrates with concepts to programs

Policy for Pre-A SE will:

- Drive linkage of concepts to operational architectures (Air Force, Coalition, and Joint)
- Facilitate better decision-making at MS/KDP A and B
- Policy for Pre-A SE will not:
 - Provide guidance idea generation
 - Direct conduct of AoA or EoA studies
 - Guide overall capabilities integration activities

SE in Pre-Acquisition Summary

- Aim to institutionalize disciplined and consistent SE application throughout the life cycle, across all AF product lines (air, space, weapons, C2)
 - MUST start in the earliest stages of concept development, <u>BEFORE</u> formal program initiation
 - Early SE is an <u>investment to reduce risk</u> in later program phases
 - Pilot project will define rigorous Early SE process
 - Policy will follow validation in FY07

<u>ULTIMATE RESULTS</u>

- Better technical planning, better integrated
- More confidence in programs entering acquisition

SE for Systems of Systems (SoS) Rules of Engagement

- Systems of Systems (SoS) result when independent and useful systems are integrated into a larger system that delivers unique capabilities
 - Both the SoS and the constituent systems consist of parts, relationships, and a whole that is greater than the sum of the parts
 - While the SoS is a system, all systems are not SoS
- SE for SoS deals with planning, analyzing, organizing, and integrating the capabilities of a mix of existing and new systems into a SoS capability greater than the sum of the capabilities of the constituent parts

(Defense Acquisition Guidebook, Chapter 4)

Keys: Definitions, Development, Acquisition, Operations

Guide to Systems of Systems (SoS) Engineering: Considerations for Systems Engineering in a SoS Environment -- draft OUSD (AT&L) publication; anticipated release Dec 2006

SE for SoS Perspectives - 1

Definitions

- System of Systems
- Family of Systems
- Federation of Systems
- Architecture
- Enterprise
- Others ??

Development

- Holistic view
- Aggregation of platform-level efforts
 - Focus on physical interfaces and functional / information exchanges
 - Degree of integration often vague

SE for SoS Perspectives - 2

Acquisition

- DoD processes largely specific to each Service/Agency
- Systems acquired independently, even to satisfy similar sets of requirements
- Contractor development processes differ greatly, even for similar systems in similar product areas

Further cultural differences in AF

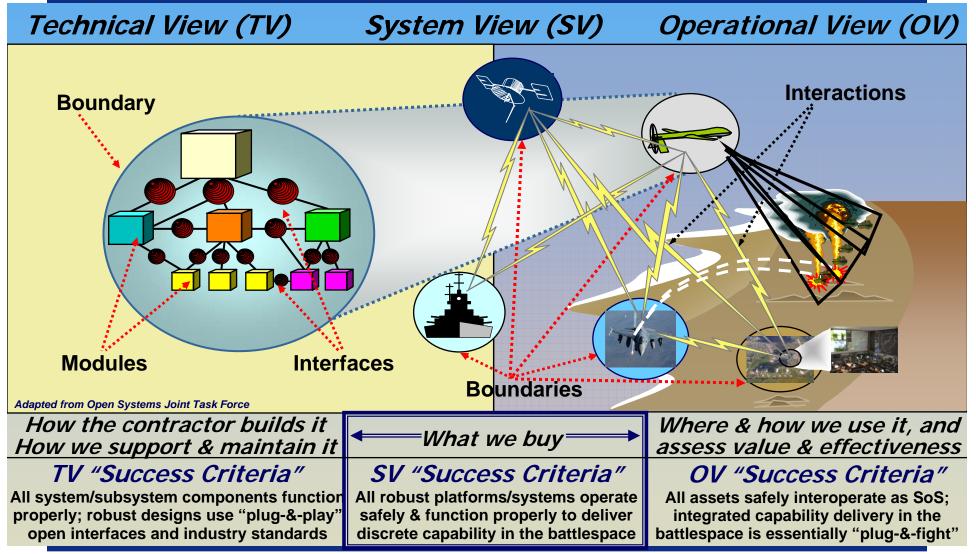
- Product Centers Logistics Centers Test Centers

Operations / Employment

- Often used in new combinations
 - > Near-infinite number of subsets of constituent elements/systems, etc.
 - Near-infinite number of dynamic configurations
- Often used in new environments and operational scenarios
- Often used with new supporting cast

SE for SoS Enabling Capabilities - Example

Capability: Targeting of Coordinate-Seeking Weapon (CSW) (all-weather, air-to-ground, GPS/INS-guided munitions)


SoS Architecture									
Acquirer	Passer	Processor	Processor Passer		Weapon				
Representative Constituent Systems									
Sniper	Link 16	AOC	Link 16	F-22A	GBU-38 (JDAM)				
JSTARS		DCGS	AWACS	B-52	GBU-39 (SDB)				
Predator		GCS		F-15E					
BAO / TAC		AWACS		F-16C/D Blk 50					

None of these systems was designed with CSW targeting in mind, and only a few of the systems were designed to interface with each other

Integrity - Service - Excellence

SoS Enabling Capabilities Defined by Architectural Views

Integrity - Service - Excellence

SE for SoS Cases & Issues - 1

New developments

- Seen as the exception rather than the rule
- Affordability constraints
- Centralized funding and management
- Role of integrator vs. role(s) of developer(s)

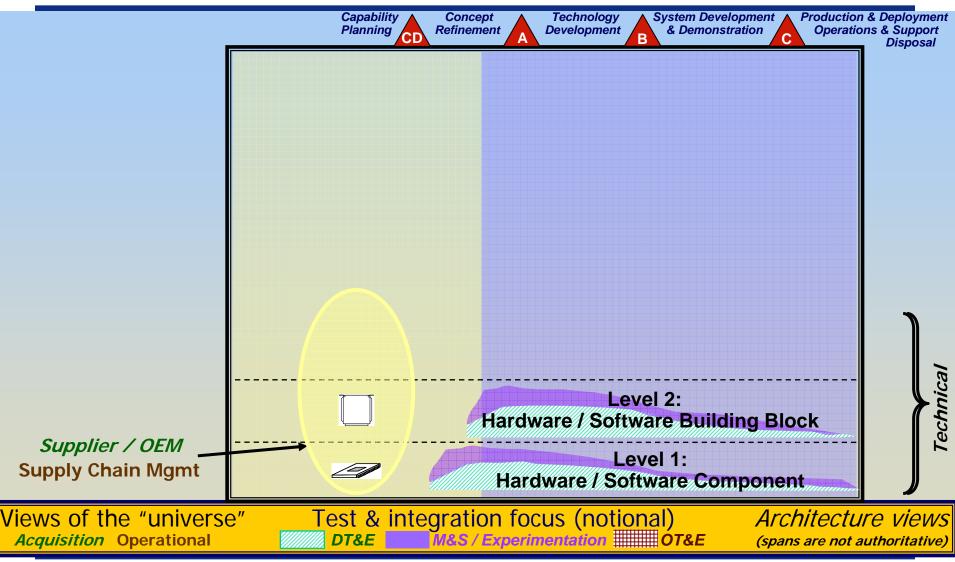
Integrated legacy systems for new capability

- Will probably be the most common approach
- Defined in interoperability ("plug-and-fight") context
- Discovery of interactions, especially in ad hoc configurations
- Inconsistent and disparate management of configurations, data, etc.
- Test / M&S: formal test, verification and validation, experimentation

SE for SoS

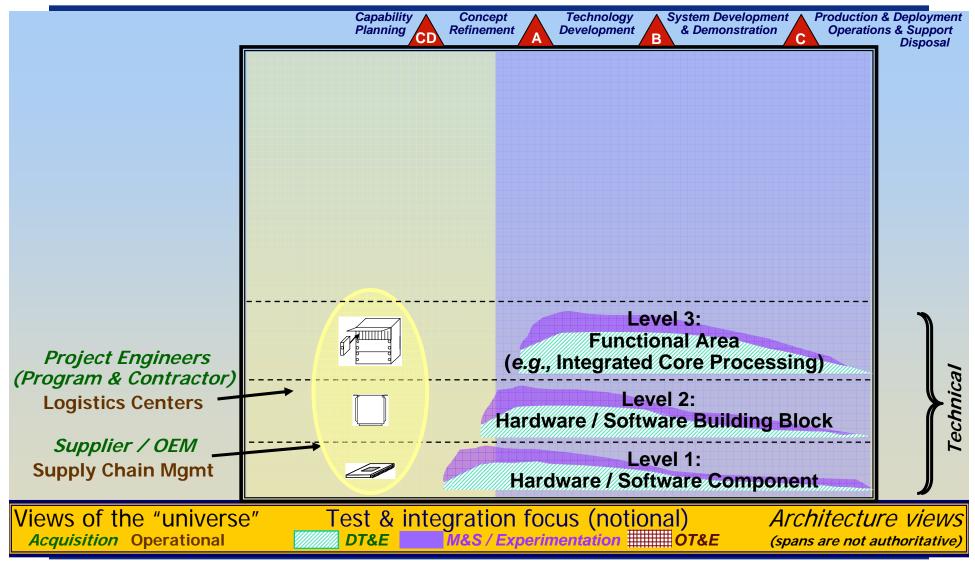
Cases & Issues - 2

- Collaboratively developed constituent systems
 - Defined in terms of a common architecture to guide development of new systems and platforms
 - Greater number of stakeholders, with both parochial and holistic interests
 - Data sharing among multiple contractors
 - Definition and management of common architecture(s)
- Sustainment of existing systems
 - Different pace of updates for different systems at different points in their life cycle
 - Increase capabilities by technology refresh / insertion
 - Often with different levels of documentation and data
 - Diminishing (and often volatile) sources of support
 - Local management / funding (particularly true for business and IT systems)

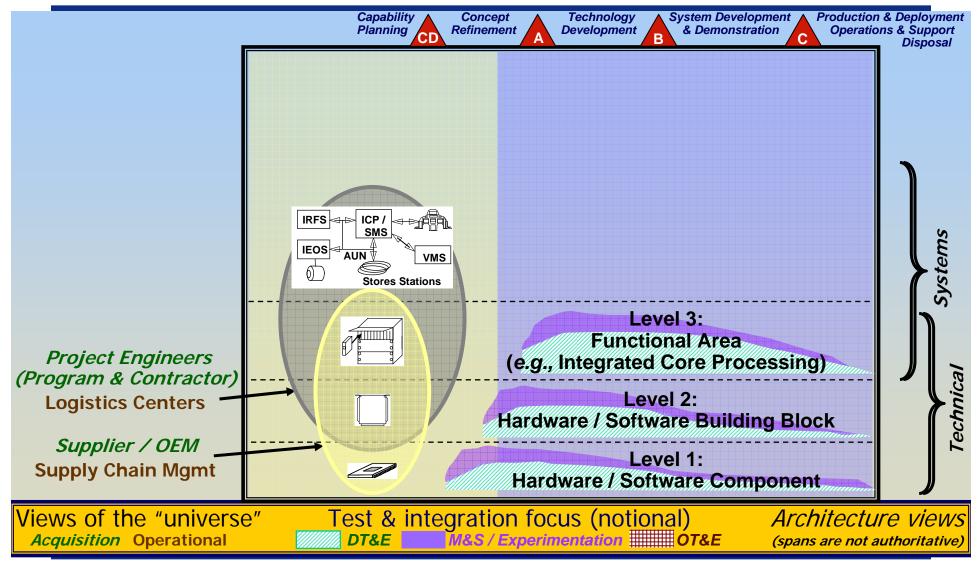


SE for SoS Summary

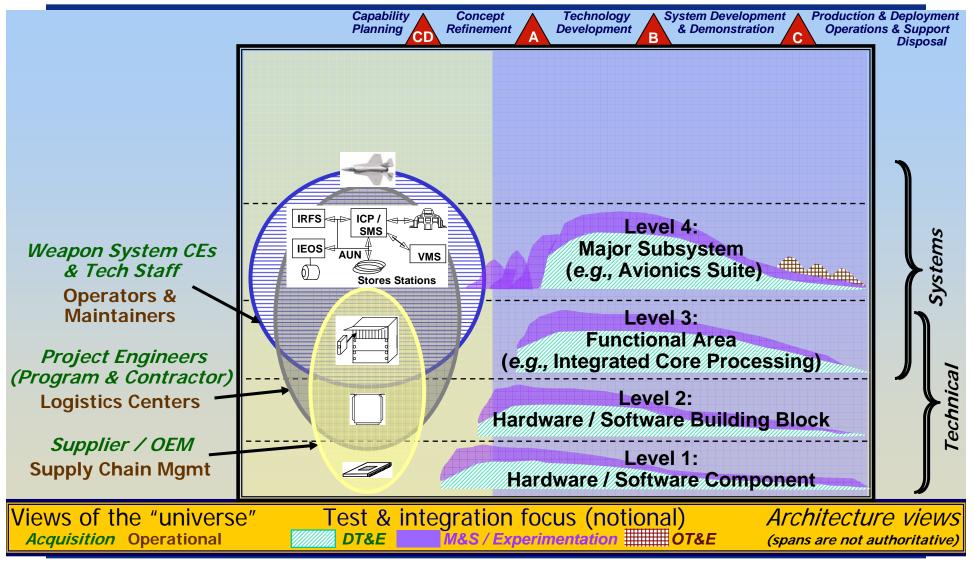
- Driven by fiscal and operational realities
- Fundamental SoSE processes (technical & technical management) largely the same as for "classical" SE
 - Greater emphasis on architecting and interfaces
- Integration challenges: test & real-world environments
 - Defining architectures to link systems and platforms
 - Experimentation as a development tool
 - Managing utilization of assets acquired and operated under disparate systems and policies
- Unique management and governance issues


ULTIMATE RESULTS

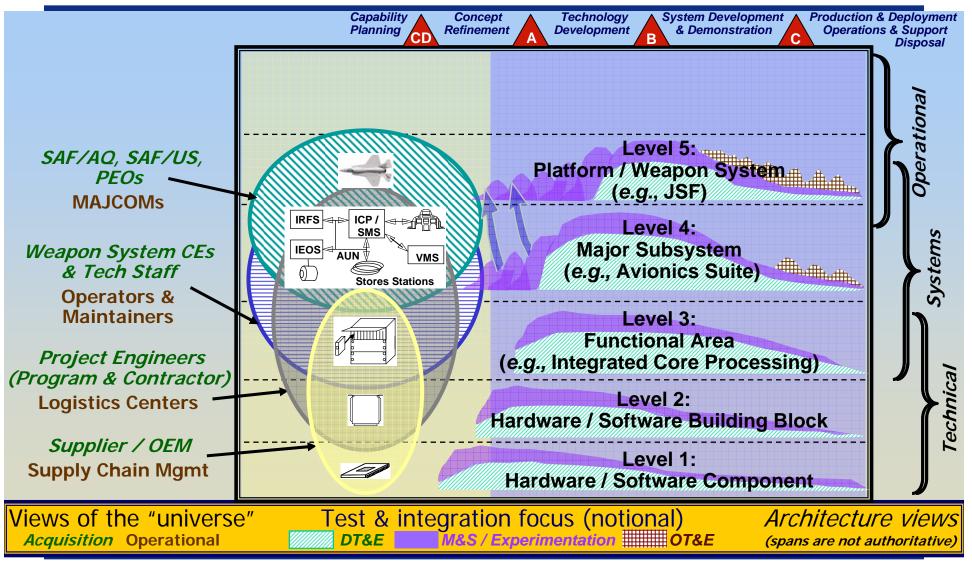
Robust, responsive capabilities delivery; better integrated
More confidence in system performance

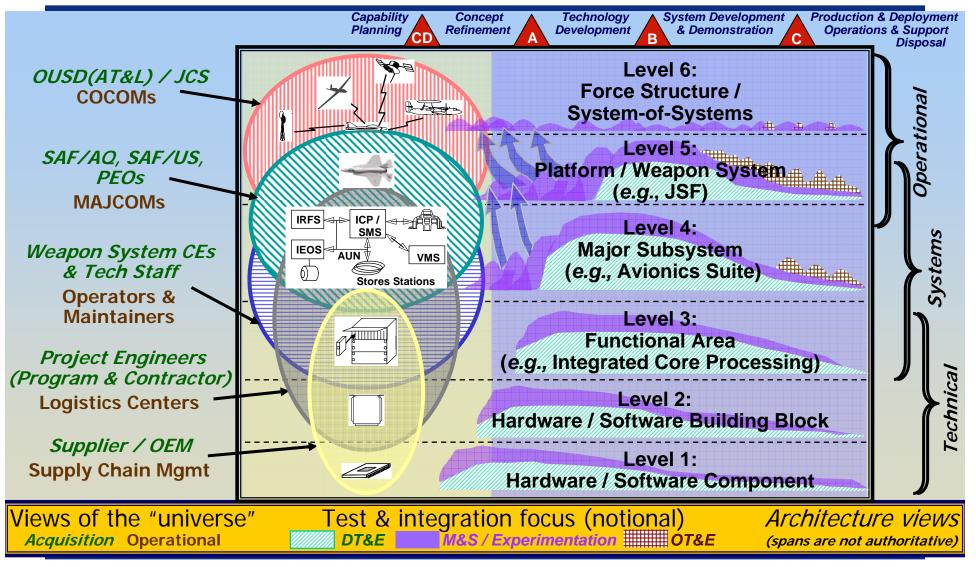


Integrity - Service - Excellence



Integrity - Service - Excellence


Integrity - Service - Excellence



Integrity - Service - Excellence

Integrity - Service - Excellence

Integrity - Service - Excellence

Focus Areas for SE Planning *

Program Requirements

- Capabilities, CONOPS, KPPs
- Statutory / regulatory
- Specified / derived performance
- Certifications
- Design considerations

Technical Staffing / Organization

- Technical authority
- Lead Systems Engineer
- IPT coordination
- IPT organization
- Organizational depth

Systems Engineering Process

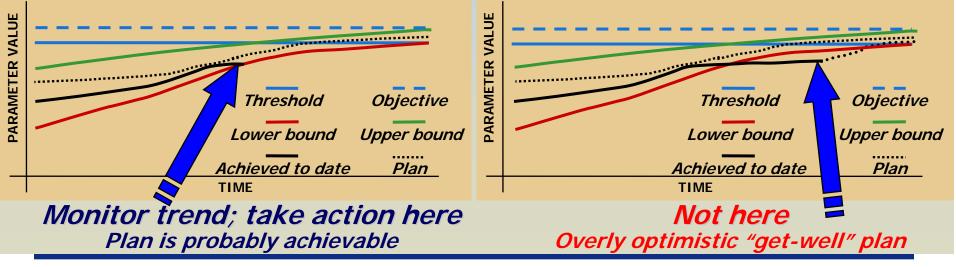
- Technical Processes
- Technical Management Processes
- Process Improvements
- Key Tools and Resources
- Trade Studies
- Linkage to Contractor SE Effort
- * Based on OSD SEP Preparation Guide

Technical Baseline Management

- Who is responsible
- Definition of baselines
- Requirements traceability
- Specification tree and WBS link
- Technical maturity and risk

Technical Review Planning

- Event-driven reviews
- Management of reviews
- Technical authority chair
- Key stakeholder participation
- Peer participation
- Integration with Overall Management of the Program
 - Linkage with other program plans
 - Program manager's role in technical reviews
 - Risk management integration
 - Test and logistics integration
 - Contracting considerations



Focus Areas for Measuring Progress

- Representative Technical Performance Measures (TPM) parameters
 - Hardware weight, speed, power, cooling, cross-section, bandwidth
 - Software throughput, lines of code
 - Verification test asset deliveries, test points completed with valid data
 - Logistics reliability, maintainability
- Integration physical and information interface definitions; verification plans

Earned Value Management System (EVMS) data

- Cost variances
- Schedule variances
- Program planning
 - Staffing
 - Subcontracting
 - Specification approvals
 - Closure of review actions

Integrity - Service - Excellence

-- Focus Areas Emerging

Technical

- Manufacturing Readiness
- Human Systems Integration (AF/SG lead)
- Specifications and Standards

Governance & Oversight

- MDA Certification (Section 801 of National Defense Authorization Act for FY06 [Pub. L. 109-163])
- System & Software Assurance (Security & Program Protection)

Multi-Faceted

- Enterprise-level SE
- Industrial Base

Visions

Phases Milestones / KDPs	Capability Planning	Concept	Technology Development	System Development & Demonstration	Production & Deployment Operations & Support Disposal
101010000	0010101	1101010100	010101015	A 110010101	01010101110
10101-0101	0.1011	1101010111	1100010	10010011001	01010101010
101011160	Q0111	101100010	0110101	01000001111	1111100101
000101010	10101	1990010111	1111111	10010101000	11010101010
1-90000000	000000		444 0000	00000101010	000000000000000000000000000000000000000
0101000	90011		1111111	11111100000	00001010101
010000000	- 9000	0000001011	1010001	11000000011	
1100 64 6	1010100		gorithms	00 E 10000 1 f	11111110
010111100	10101		ntegration let-Ready		11000000
001001016	100110		Date Onk OCA		
11111111001	010101	CO. 1consecuénce () (<u>10010446</u>		

Consistent application of rigorous life cycle SE in all AF product lines, enabled by a skilled workforce and a policy framework with an integrated life cycle perspective

Delivery and support of quality systems/SoS/software, on cost and on schedule

Integrity - Service - Excellence

"We demand rigidly defined areas of doubt and uncertainty!"

Douglas Adams, The Hitchhiker's Guide to the Galaxy