

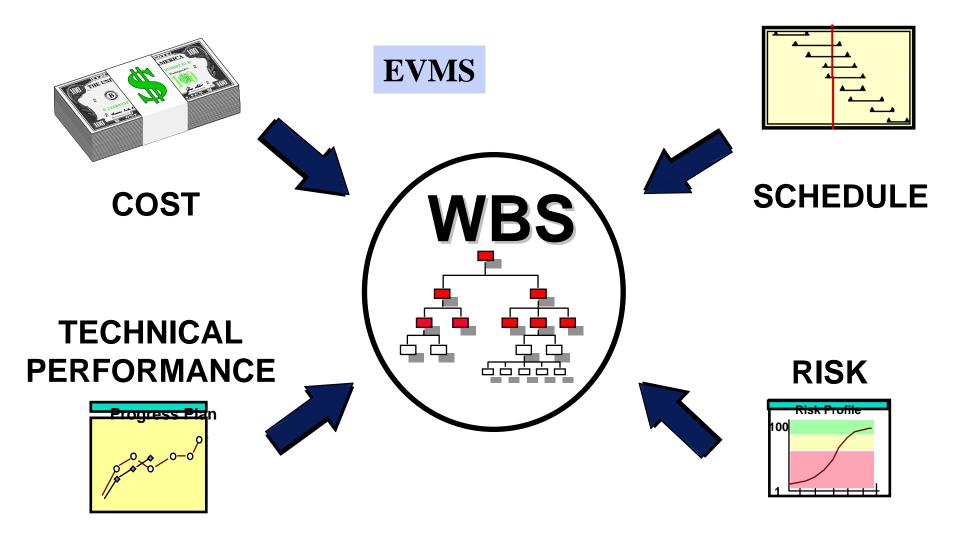
Performance-Based Earned Value®

NDIA Systems Engineering Conference San Diego, CA October 25, 2006 Paul J. Solomon, PMP Performance-Based Earned Value[®] Paul.Solomon@PB-EV.com

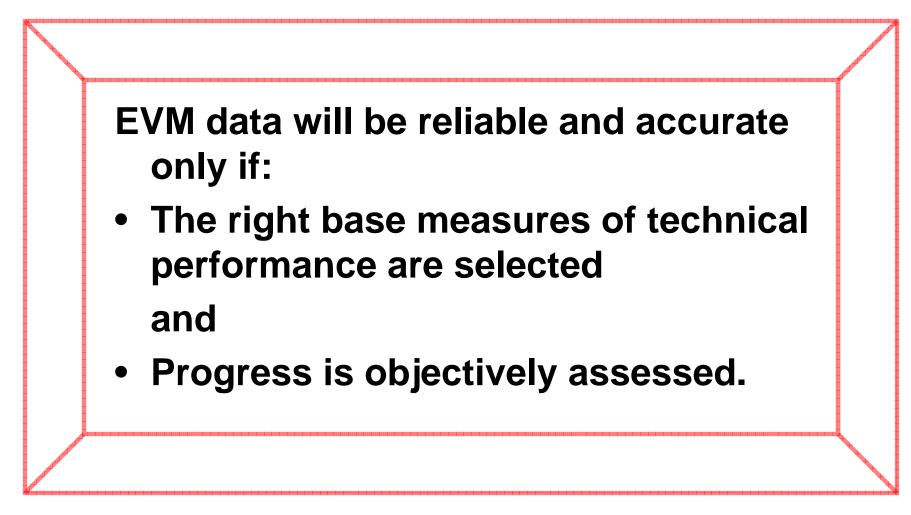
Agenda

- DoD Policy and Guidance, Customer Expectations
- Standards, Models, and Best Practices
- Project Management with Performance-Based Earned Value[®] (PBEVSM)
- Better Acquisition Management

Copyright© 2006 by Paul Solomon. This material contains excerpts from the book, *Performance-Based Earned Value.*® The excerpts were reprinted courtesy of John Wiley & Sons, Inc. and the IEEE Computer Society Press. *Performance-Based Earned Value*® was written by Paul Solomon and Ralph Young and copyrighted by the IEEE, 2007.


Project Management Shortfalls

- Inadequate early warning
- Schedules, EV overstate true progress
- Remaining work underestimated



Does EVMS Really Integrate?

Value of Earned Value

DoD Policy and Guidance, Customer Expectations

Government Pays But Fails to Get Desired Outcomes

GAO Report	Title	Findings and Recommendations
06-66	Defense Acquisitions: DOD Paid Billions in Award and Incentive Fees <i>Regardless of</i> <i>Acquisition</i> <i>Outcomes</i>	 Contractors not held accountable for achieving desired outcomes: Cost goals Schedule goals Desired capabilities Programs do not capture early on the requisite knowledge needed to effectively manage program risks
06-391	Defense Acquisitions: Assessments of Major Programs	DOD needs to change its requirements and budgeting processes to get desired outcomes from the acquisition process

(a) Government Accountability Office © 2006 Paul J. Solomon

GAO Best Practices

GAO Report	Title	Findings and Recommendations
04-722	Information Technology: DOD's Acquisition Policies and Guidance	 Best Practices and Controls: Ensure that <i>requirements</i> are traceable, verifiable, and controlled. Trace requirements to system design specifications and testing documents. Continually measure an acquisition's
06-215	DOD Systems Modernization	 Continuary measure an acquisition's performance, cost, and schedule against approved baselines.

DOD Policy & Guidance on SE

Policy for Systems Engineering in DOD Policy 2/20/04

Defense Acquisition Guidebook (DAG) 10/8/04

Systems Engineering Plan Preparation Guide (SEP) 2/10/06

WBS Handbook, Mil-HDBK-881A (WBS) 7/30/05

Integrated Master Plan (IMP) & Integrated Master Schedule Preparation & Use Guide (IMS) 10/21/05

Risk Management Guide for DOD Acquisition (RISK) Aug. 06

DOD Policy & Guides

Policy or Guide (1 of 3)	Policy	DAG	SEP	WBS	IMS
Develop SEP	Ρ	4.2.3.2	1.0		
Technical reviews:					
 Event-driven timing 	Ρ	4.5.1	3.4.4	3.2.3.1	2.3, 3.3.2
Success criteria	Р	4.5.1	3.4.4	3.2.3.1	
 Assess technical maturity 		4.5.1	3.4.4	3.2.3.1	
Integrate SEP with:					
• IMP		4.5.1	3.4.5		1.2, 2.3
• IMS		4.5.1	3.4.5		1.2, 2.3
Technical Performance		A E A	2 4 4		1 2 2 2
Measures (TPM)		4.3.1	3.4.4		1.2, 2.3
• EVM			3.4.5		1.2, 2.3

DOD Guides

Guide (2 of 3)	DAG	<u>SEP</u>	WBS	IMS
Integrate WBS with requirements			2.2.3,	3.4.3
specification, statements of work			3.2.3.3	
(SOW), IMP, IMS, and EVMS				
TPMs to compare actual vs. plan:	4.5.5	3.4.4		3.3.2
 Technical development 				
Design maturity				
TPMs to report degree to which	4.5.5	3.4.4		
system requirements are met:				
Performance				
• Cost				
Schedule				
Standards and models to apply SE	4.2.2			
	4.2.2.1			
Institute requirements management				
and traceability	4.2.3.4	3.4.4		

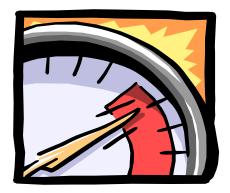
Standards, Models, and Best Practices

DOD Technical Baselines

DAG Technical Review	DAG Baseline	DAG	<u>IEEE 1220</u>
System Functional Review	System Functional Baseline	4.3.3.4.3	Validated Requirements Baseline
Preliminary Design Review	System Allocated Baseline	4.3.3.4.4	Verified Physical Architecture
Critical Design Review	System Product Baseline	4.3.3.4.5	Verified Physical Architecture
Production Readiness Review	System Product Baseline	4.3.3.9.3	Verified Physical Architecture

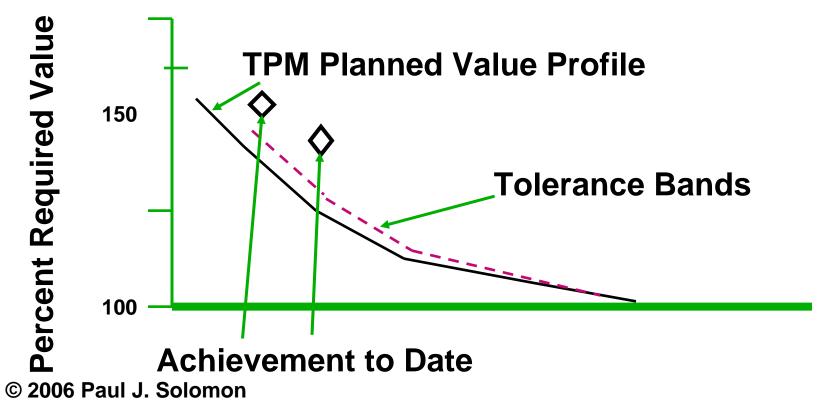
Requirements Progress

IEEE 1220	<u>EIA-632</u>
6.8.1.5 Performance-based progress measurement 6.8.6 Track product metrics	4.2.1 Planning process, Req. 10: Progress against requirements
 6.8.1.5 d) Assess <i>Development maturity</i> to date Product's ability to satisfy requirements 6.8.6 Product metricsat pre- established control points enable: Overall system quality evaluation Comparison to planned goals and targets 	 Assess progress Compare system definition Against requirements a) Identify product metrics and expected values Quality of product Progress towards satisfying requirements D) Compare results against requirements


Technical Performance Measures (TPM)

IEEE 1220: 6.8.1.5, Performance-based progress measurement	EIA-632: Glossary
TPMs are key to progressively assess technical progress	<i>Predict</i> future value of <i>key</i> <i>technical parameters</i> of the end system based on current assessments
•Establish <i>dates</i> for – Checking Progress – Meeting full conformance to requirements	 <i>Planned value</i> profile is time- phased achievement projected <i>Achievement to date</i> <i>Technical milestone where</i> <i>TPM evaluation is reported</i>

TPM


- How well a system is achieving performance requirements
- Use actual or predicted values from:
 - Engineering measurements
 - Tests
 - Experiments
 - Prototypes
- Examples:
 - Payload
 - Response time
 - Range
 - Power
 - Weight

TPM

Use TPMs as a base measure of EV

Success Criteria of Technical Reviews

IEEE 1220, Preliminary design stage

5.2.4.1 Subsystem reviews

- a. Subsystem definition
- Mature
 - Meet SE milestone criteria
- a. Component allocations and specifications
 - Provide a sound subsystem concept
- c. Subsystem risks assessed and mitigated
- d. Trade-study data...substantiate that subsystem requirements are achievable

IEEE 1220, (6.6): Success Criteria

- Design solution meets:
 - Allocated performance requirements
 - Functional performance requirements
 - Interface requirements
 - Workload limitations
 - Constraints
 - Use models and/or prototypes to determine success

 CMMI, PMBOK Guide: Traceability and consistency Work
 <u>Work</u>
 <u>Product</u> Requirements Baseline
 <u>Product</u> Requirements
 <u>Product</u> New Science
 <u>Project Plans</u> Task 1 - Task 2 - Task 3 - Activities - Work Products

Process and Product QA

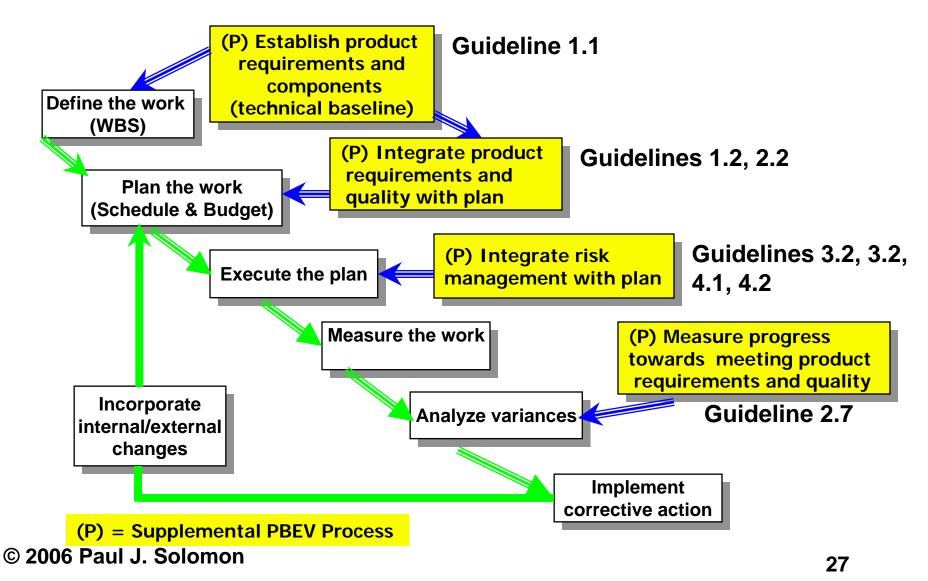
- Product QA
 - CMMI:
 - Objectively evaluate work products against clearly stated criteria
 - Minimize subjectivity
 - EVMS:
 - EV is measurement of *quantity* of work
 - "Quality and technical content of work performed are controlled by other means!"

Project Management with Performance-Based Earned Value[®] (PBEVSM)

PBEV

- 4 Principles and 16 Guidelines
- Specify most effective measures of project performance
- Requirements-driven plan
- Consistent with standards and models
- Tailorable and scalable, depending on risk
- Lean

PBEV Based on Standards and Models


- ANSI/EIA-632
- IEEE 1220
- CMMI[®]
- PMBOK[®] Guide
- INCOSE SE Handbook
- PSM. Practical Software and Systems Measurement: A Foundation for Objective Project Management
- Earned Value Management Systems (ANSI/EIA-748-A-1998, reaffirmed August 28, 2002) (EVMS)

- 1. Integrate product requirements and quality into the project plan.
- 2. Specify performance towards meeting product requirements, including planned quality, as a base measure of earned value.
- 3. Integrate risk management with EVM.
- 4. Tailor the application of PBEV according to the risk.

Supplemental PBEV Process Flow

PBEV Techniques

- Measure quality
 - Work products (partial and complete)
 - Technical maturity of evolving product
 - Use analysis, models, simulations, prototypes
- Base EV on
 - Work products (drawings, code) and
 - Quality

EX 1: Schedule Plan and Status

Schedule Plan	Jan.	Feb.	Mar.	Apr.	May	Total
Drawings	8	10	12	10	10	50
Requirements met:						
Weight				1		1
Diameter				1		1

Status at April 30

- Drawings completed: 41
- Weight requirement *not* met
- Diameter requirement met

EX 1: Earned Value

Technical							
Design (drawings)	Jan.	Feb.	Mar.	Apr.	May	Total	
(drawings)							
Planned	8	10	12	10	10	50	
drawings cur							
Planned	8	18	30	40	50		
drawings cum							
BCWS cur	320	400	480	400	400	2000	
BCWS cum	320	720	1200	1600	2000 🔨	2000	
Actual drawings completed cur	9	10	10	12	8		
Actual drawings completed cum	9	19	29	41	49		
EV (drawings) cum	360	760	1160	1640	1960		SV = - 140
Negative EV					-100		
Reqs cum							
Net EV cum	360	760	1160	1640	-1860		

EX 1: Variance Analysis

Variance analysis (drawings and requirements):

- 1 drawing behind schedule
- Diameter requirement met
- Weight requirement *not* met:

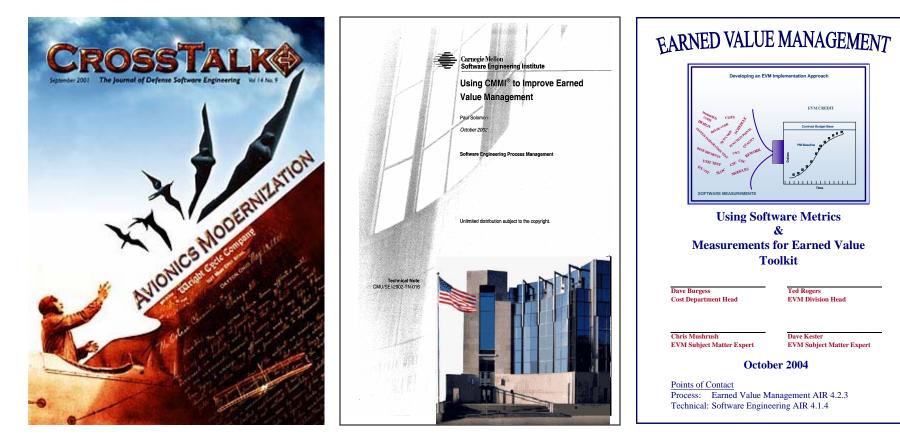
Schedule variance

- 40

Better Acquisition Management

Ensure Contractors Integrate SE with EVM

- Requirements, incentives, insight:
 - Solicitation/Request for Proposal (RFP)
 - Integrated Master Plan (IMP)
 - Integrated Baseline Review (IBR)
 - Integrated Master Schedule (IMS)
 - EVMS compliance assessments
 - Independent technical assessments
 - Monitor consistency and validity of reports
 - Independent EAC and risk assessments
 - Award fee criteria


Summary

- Integrate
 - Systems engineering with PBEV
 - Product requirements
 - Manage the technical baseline
 - Technical performance measures
 - SE life cycle work products
 - Technical>schedule>cost performance
- Lean process
 - Less work packages with right base measures
- Agile

Process Improvement

Sept. 2001 Aug. 2005 May 2006

• Tips

• FAR

But wait.

Process Improvement

There's more! • Examples **PERFORMANCE-BASED** TÉRR • Templates EARNED VALUE® • Standards PBEV Technical PBEV = EVM + Quality PAUL J. SOLOMON, PMP RALPH R. YOUNG, DBA

References

- CMMI Is Registered by Carnegie Mellon University in the U.S. Patent and Trademark Office.
- [®] Performance-Based Earned Value is registered by Paul Solomon in the U.S. Patent and Trademark Office. PBEV is a Service Mark of Paul Solomon.
- [®] PMBOK is registered by the Project Management Institute in the U.S. Patent and Trademark Office
- American National Standards Institute (ANSI)/Electronics Industries Alliance (EIA). ANSI/EIA 632, *Processes for Engineering a System*, EIA, Arlington, VA, 1998.
- CMMI, Capability Maturity Model Integration-Systems Engineering/Software Engineering/Integrated Product and Process Development, Version 1.1, 2002.
- INCOSE 2006. International Council on Systems Engineering (INCOSE). INCOSE Systems Engineering Handbook, version 3. June 2006. page 7.11
- Institute of Electrical and Electronics Engineers (IEEE). IEEE Std 1220[™]-2005, IEEE Standard for Application and Management of the Systems Engineering Process. New York, 2005.
- Naval Air Systems Command (NAVAIR). "Using Software Metrics & Measurements for Earned Value Toolkit." Department of the Navy (October 2004).

References

- PSM. Practical Software and Systems Measurement: A Foundation for Objective Project Management, Version 4.0b, October 2000 (www.psmsc.com).
- Solomon, Paul. "Practical Software Measurement, PBEV", CrossTalk (September 2001) <u>www.stsc.hill.af.mil/crosstalk/2001/09/index.html</u>.
- Solomon, Paul. "Going From PBEV to the CMMI", CrossTalk (September 2002) www.stsc.hill.af.mil/crosstalk/2002/09/index.html.
- Solomon, Paul, "Using CMMI to Improve Earned Value Management" (CMU/SEI-2002-TN-016) (October 2002).
 www.sei.cmu.edu/publications/documents/02.reports/02tn016.html
- Solomon, Paul, "Integrating Systems Engineering with Earned Value Management", *Defense Acquisition, Technology and Logistics (AT&L) Magazine* (May 2004). <u>www.dau.mil/pubs/dam/05_06_2004/may-june04.pdf</u>.
- USAF Space & Missile Systems Center, "Systems Engineering Primer and Handbook" (January 2004)
- Young, Ralph R. *Effective Requirements Practices* (Addison-Wesley, 2001).
- Solomon, Paul. "Performance-Based Earned Value", CrossTalk (August 2005) www.stsc.hill.af.mil/crosstalk/2005/08/index.html.
- Solomon, Paul. "Practical, Performance-Based Earned Value", CrossTalk (May 2006)