Airborne Warning and Control Systems Program Office

Integrity - Service - Excellence

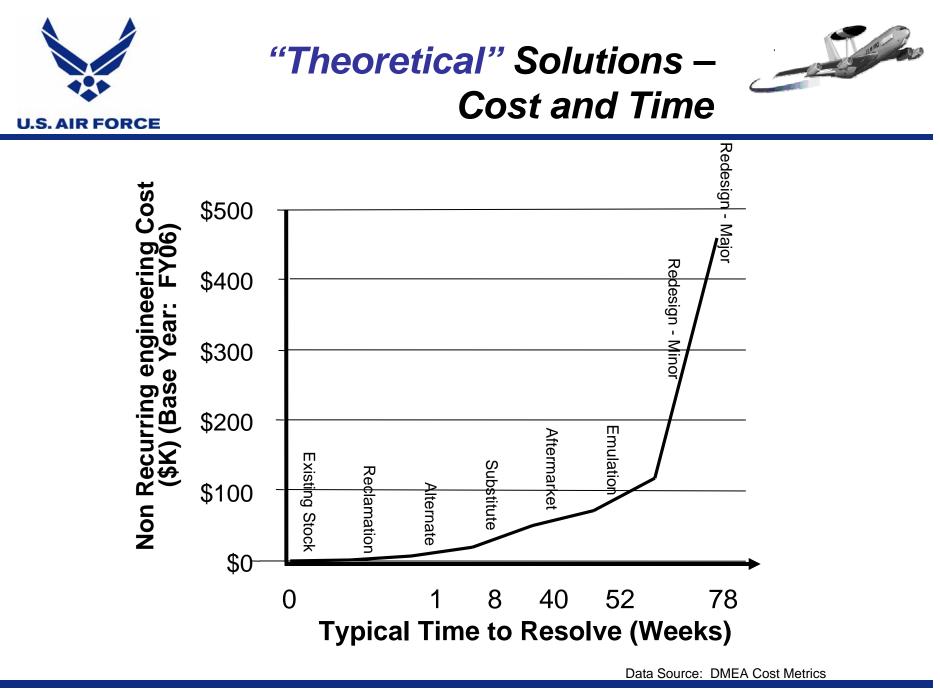
Lessons Learned from a Mature DMSMS Program

9th Annual Systems Engineering Conference

SQNLDR P.D.Weeding 3 Eglin Street, Building 1612 Hanscom AFB, MA 01731 DSN 478-7714 Commercial (781)-377-7714 Fax (781)-377-1069

Overview

- Scope of Effort
- DMSMS Goals
- Lessons Learned
- Summary

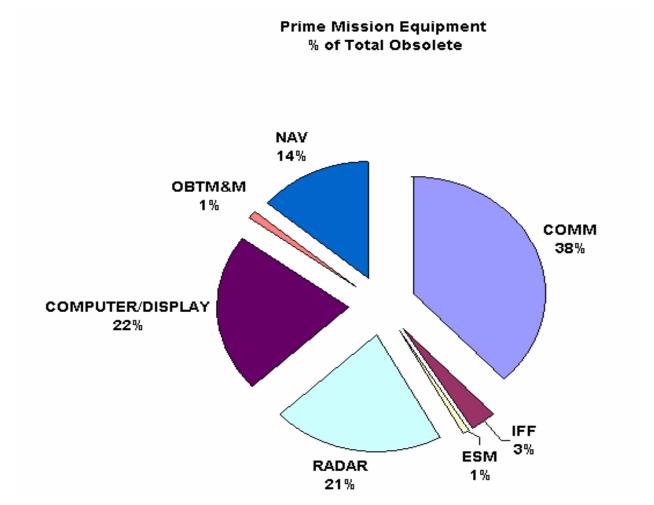

- Design: Modified Boeing 707/320
- Function: Airborne surveillance, command, control and communications (*High Demand*)
- Fleet Size: 33 Aircraft (Low Density Small Fleet)
- Age: 30 years old
- Annual Hours: 18,000
- Service Life: Extended to 2035+
- Community Partners: NATO 17, United Kingdom 7, Saudi Arabia 5, France 4, and Japan 4 Boeing 767 Aircraft

Vision and Mission

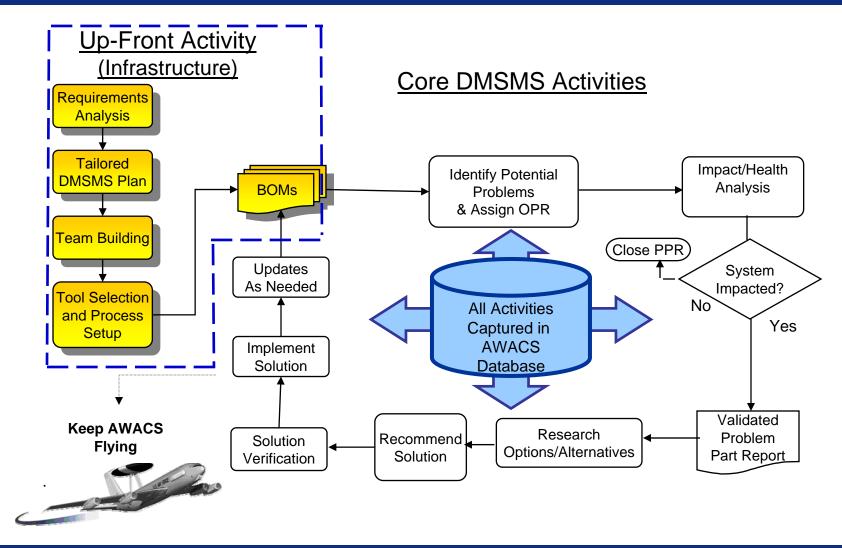
- Vision "To never have an AWACS E-3 become mission incapable due to the impact of DMSMS"
- Mission "To develop and implement an integrated proactive DMSMS program in support of the AWACS Program Office"
- Goal "Drive down Total Ownership Costs"



Integrity - Service - Excellence



Impact to AWACS



- Identify and capture existing aircraft configuration
- DMSMS focus on current issues and future mods
- Address present and future supportability concerns
- Preserve system and end-item OSS&E
- **Coordinate and consolidate community efforts**
- Integrate and implement resolutions (recommendations)
- Mitigate electronic and mechanical obsolescence
- **Reduce both sustainment and development costs**
- Institutionalize proactive DMSMS processes
 - Pinpoint end-item and system drivers to analyze
 - Track all DMSMS tasks (WG database)

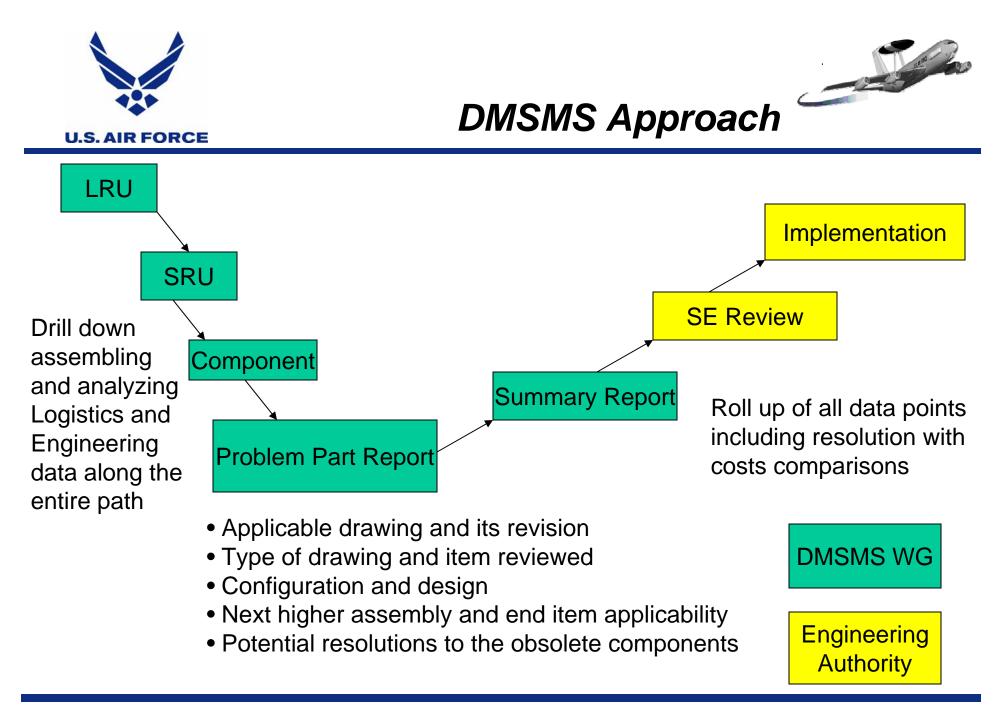
551st DMSMS Process Flow

Operational Impact Analysis (OIA)*

U.S. AIR FORCE

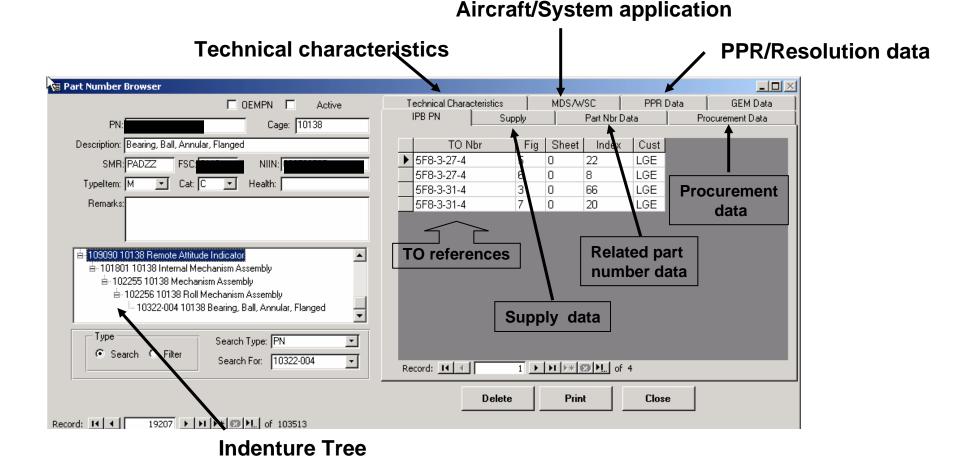
MDS	Avg Operating Hours	Avg QPA	Avg App %																					
E003A		1	100																					
E003B	2715	1	100																					
E003C	1700	1	100																					
Part Number	Noun	NIIN	Initial QTY Spares	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
LRU	Air Speed			16	16	14	12	10	7	4	1	-2	-5	-8	-11	-15	-19	-23	-27	-31	-36	-41	-46	-51
	Indicator		16	16900	17100	17000	16800	17100	17300	17300	17300	17300	17300	17300	17300	17300	17300	17300	17300	17300	17300			17300
SRUs																								
	Bridge And Failure Monitor		3	2	0	-2	-4	-6	-9	-12	-15	-18	-21	-24	-27	-31	-35	-39	-43	-47	-52	-57	-62	-67
	Amplifier And																							

* The OIA is an ARINC Proprietary Tool


AWACS Priority Database

U.S. AIR FORCE

😫 LRU Analysis		×
Aircraft	System:	End Item:
E003B AWACS AWACS	INSTRUMENTS <u>•</u>	FLIGHT DIRECTOR SYSTEM
	Status: Work Pool	Go To:
, LRU JETD:		Part Status:
	Description: Control, Mode Selector	
Navigate	Part Number:	-
	CAGE: NSN:	-
	WUC: 51000	1
OIA/PPR Schedule Other Start OIA Revisit Date 21-Mar-2007 OIA Complete? D Green: Yellow: Red:	-Jan-2006 PPR Required Is Complete? Start PPR Deferred? PPR Generate Repl: Sent to IPT:	Revisit Date
2015 2016 2017 Deferral Comment:	2016 Deferral Comm	

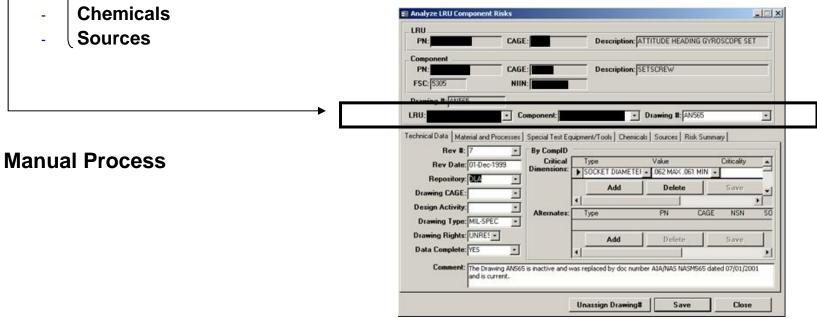

- SQL Database
- Stores
- Calculates
- Exports
- Schedules

* The Priority Database is an ARINC Proprietary Tool

ALARM© Shapshot

U.S. AIR FORCE

ARINC Process: Assess obsolescence characteristics of each component in an end item BOM, assign risk rating, roll up to LRU rating, and rank the LRU relative to other LRUs:



ARINC Process

Identify "High" risk component items and perform engineering assessment to determine unique component characteristics contributing to obsolescence risk:

- (Technical data completeness
- Special material and processes
- ___ 〈 Special test equipment/tools

ALARM© Shapshot

ARINC Process

U.S. AIR FORCE

- **Create mechanical attribute library**
- **Data availability** -
- Applicable specifications/standards and their status
- **Tool availability**
- **Banned chemicals**
- Sources no bid

PN:	CAG	E:	Description: ATTITUDE HEADING GYROSCOPE SET						
FSC: 5305	CAG		Description: S	ETSOREW					
Drawing #: AN56	10 A	omponent:	-	Drawing #: ANS65		-			
chnical Data Mab			ment/Tools Chemica	els Sources Risk Su	mmary				
Rev #: Rev Date:	7 01-Dec-1999	By CompID Critical	Туре	Value	Criticality	-			
Repository:		Dimensions:	SOCKET DIAMETER	.062 MAX .061 MI	N -	2			
Drawing CAGE:			Add	Delete	Save	-1			
		Alternates:	Туре	PN CA	GE NSN	50			
Design Activity:	MIL COCC	-				-			
Design Activity: Drawing Type:	MIL-SPEC			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Save				
Drawing Type: Drawing Rights:			Add	Delete					
Drawing Type:				Delete		•			
Drawing Type: Drawing Rights: Data Complete:		1 1	1	Delete		2			

Data stored based on drawing, allows multiple PNs within drawing to be documented and retained

— PN specific data stored separately

As library grows for each category of data, less information to manually document

- VHF radio
 - One of the first systems on which an evaluation a DMSMS was developed
 - Assumed configuration in predictive health tool was correct
 - Performed assessment even though OIA showed no support impacts up to 2024
 - Did not research if system was to be replaced
 - Learned configuration in predictive health tool did not include all SRUs (Over 20 CCAs not assessed)
 - Researched drawing data to extract correct configuration
 - Found out system was scheduled to be replaced in 2010
 - Changed process to include system manager in determining if DMSMS assessment required and when system was scheduled for replacement

- Standardized Central Air Data Computer (SCADC) and UHF Radio
 - USAF program offices and FMS customers concerned that a new modified SCADC would not be supportable
 - UHF radio DMSMS issues raised by FMS community
 - DMSMS assessments initiated
 - OIAs for the SCADC and UHF radio showed that no obsolescence impact to mission support due to large number of spares in the supply system
 - SCADC removed from decommissioned fleet (C-141, 2 per), and spares placed in inventory (over 400)
 - UHF radio inventory build up due to replacement of radio on some fleets
 - Determined that even though obsolescence may adversely impact SRUs:
 - If enough LRU spares (serviceable and reparable) exist, obsolescence impacts are negated because cannibalization can support extended requirements
 - Use preliminary OIA to determine which LRUs to assess (if green through 2026 or green past replacement date, defer analysis
 - Must take supply chain into account versus only obsolescence data

- Large Systems
 - Radar
 - Over NNN LRUs in the radar system
 - Top NN obsolescence LRUs in the radar
 - Inundated the engineering authority for the radar with proposed resolutions to obsolescence
 - Decision made to alternate between radar and other system LRUs
 - Otherwise could have spent entire contract period on a single system
 - Need to show DMSMS working for all stakeholders in the your community

- Data key to success
 - Configuration data
 - Technical Data
 - Market Surveys for COTS
- Teaming Required
 - MOAs mapped out and agreed upon
 - WG responsibilities defined
 - Due to differing DMSMS methodologies across user community
- Return on Investment (ROI)
 - None experienced without implementation of solutions
 - POM justification can be generated in proactive program
 - DMSMS focus on current issues and future mods
- Data points
 - Just a starting point...no one tool is enough
 - Prioritization...assessment of Supply Chain can focus resources
 - Focus on areas with greatest impact

Lessons Learned

- **Proactive...Cost Avoidance growth per year**
 - 2003-\$823,500
 - **Resolutions-153**
 - ROI- 4.1 to 1
 - 2004- \$2.56M
 - **Resolutions-354**
 - ROI- 5.6 to 1
 - 2005- \$3.80M
 - **Resolutions-184**
 - ROI- 16.1 to 1
 - To date 2006- \$2.96M
 - **Resolutions-146**
 - ROI- 15.7 to 1

