Battelle The Business of Innovation

Integration of Transport Modeling with Test and Evaluation in CBR Building Protection Programs

NDIA 22nd Annual National Test and Evaluation Conference

James Risser Michael Helinski George Fenton Battelle Memorial Institute 9 March 2006

Introduction

- CBR Building Protection Overview
- Role of M&S and T&E in the building protection process
- Types of models and experimentation
- Interactions between nodal modeling and contaminant transport experiments
- Example of modeling and experimental interactions and conformance analysis process
- Summary

CBR Building Protection Overview

Why are buildings vulnerable to CB attack?

- Containment of CB agents within a confined space allows concentrations to rapidly reach and sustain lethal levels
- CB agents are effectively transported throughout a building by mechanical systems
- Population densities are high in buildings
- Potential to deliver agent covertly
- Numerous adsorbing surfaces that make building restoration difficult

Battelle 3 The Business of Innovation

Range of Protection Solutions

Protection System Development Process

- External Threat Modeling
- Baseline Transport Modeling
 Characterization Testing
- Potential Solution Development
- Modeling Analysis of Alternatives
- Modeling Inputs to Test Plan
- Model Updates from Test Data

Types of Models

Ambient Dispersion Modeling

- Used to characterize external threats
- Tools include HPAC, VLSTrack, Aloha ...

HPAC & Aloha

Difficult to validate

AFGI

Detec

Nodal Modeling

- Used to characterize internal transport and evaluate protection system performance
- Tools include CONTAMW and COMIS
- Allows conducting numerous model runs quickly
- Validate using dosage measurements throughout building

Sarin

Battelle

The Business of Innovation

CFD Modeling

- Used to Integrate outdoor and indoor models and to characterize flow dynamics within rooms
- Time-consuming to configure and run
- Validation requires distributed concentration vs. time measurements

CONTAMW Nodal Modeling

- Designed for characterization of contaminant transport though ventilated buildings
 - Utilities to simulate building HVAC systems and components
 - Libraries with representative building leakage data
 - Model output of zone concentration profiles and flow-path airflows
 - GUI for simple model construction.

Limitations	Solutions	
• Well-mixed assumption inaccurate for larger building volumes.	• Break large volumes into subzones and/or correlate test data (parameterizations) with model.	
• Inaccurate contaminant transport time scales.	• Correlate test data with model and/or apply CFD modeling to large volumes.	
• Cannot model external releases.	 Characterize external cloud using ambient dispersion models. Utilize CFD or parameterizations to correct for plume/building wake interaction. 	
• CB agent properties not fully represented.	• Post process model results with corrections derived from test data for deposition rates, release efficiencies, removal mechanisms, etc.	

Modeling and Experimentation Requirements

- Nodal Modeling
 - Knowledge of threat agent characteristics
 - Knowledge of building environment
 - Understanding of limitations and solutions to limitations
 - Automated post-processing
 - Experience in interpreting model results
 - Methods for modeling personnel movement
- Experimentation
 - Simulant to agent correlations
 - Controllable release mechanisms for repeatable releases
 - Sampling instrumentation, sample handling and analysis methods
 - Data analysis methods (including uncertainty analysis)

Modeling / Experimentation Process

Modeling / Experimentation Process Example

Example Building

- Former military barracks, 30,000 ft²
- Three stories with a quarter basement
- Four HVAC zones

CONTAM Model Schematic

Test Parameter Selection – Sampling Locations

- Selection of sampling locations
 - Release room and adjacent rooms
 - HVAC system returns, supplies and fresh air intakes
 - At primary transport pathways
 - In sets of representative rooms

Test Parameter Selection – Release Mass

- Determination of mass of simulant to be released
 - Release mass chosen to achieve detection but not saturate real-time detectors (release room may be an exception)
 - Release mass chosen to maximize measurable dosages throughout building.

Real-time Detector Location	Max Release Mass to Saturate Detector, g	Min Release Mass to Achieve Detection, g
Release Room	3	0.01
Room 2	85	0.21
Room 3	66	0.17
Room 4	64	0.16

Bailelle 12 The Business of Innovation

Test Parameter Selection – Sampling Time

- Determination of sampling time
 - Duration of experiment set so that additional sampling time will not significantly affect measured dosages

Modeling & Experimentation Conformance Analysis Process

Modeling & Experimentation Conformance

Conformance Analysis Example Model to Test Data Comparison

Comparison of data shows deviations between model and test data

Modeling & Experimentation Conformance

• Fresh air flow-rate model adjustment brings model into better agreement with experimental data.

• Subsequent analysis of all experiments in set indicate adjustment improves or maintains conformance.

Battelle 16

Conclusions and Lessons Learned

- Integration of modeling and experimentation efforts is necessary to deal with the shortcomings of each.
 - Instantaneous, well-mixed assumption of nodal models
 - High cost of experimentation
- Using modeling to support planning of experiments improves efficiency in conduct of experiments.
- Conformance analysis provides an effective means of comparing modeled data to experimental data and identifying model improvements to enhance fidelity of model predictions.
 - Conformance analysis must be applied to all components and all test cases.

Contact Information

James E. Risser Associate Manager – Infrastructure Assessment

Battelle Eastern Science & Technology Center 1204 Technology Drive Aberdeen, MD 21001

> risserj@battelle.org 410-306-8583

