Georgia Tech Institute

Scorpion Technology Program Overview

DARPA

POC: Dr. Steve Walker swalker@darpa.mil

GTRI

POC: Dr. Jim McMichael jim.mcmichael@gatech.gtri.edu

ARL

POC: Dr. Peter Plostins plostins@arl.army.mil POC: Mr. David Lyon Iyon@arl.army.mil NDIA Fire Power Symposium Parsipanny, NJ, 12 June 2007

"Micro Adaptive Flow Control Applied to a Spinning Projectile"

SCORPION Self-Correcting Projectile for Infantry Operation

J. McMichael, A. Glezer and A. Lovas, *GTRI* P. Plostins, G. Brown and J. Sahu, *USARL*

in collaboration with: Mike Heiges, Kevin Massey, GTRI Dave Lyon, Dave Hepner, Tom Harkin, USARL Mark Allen, Brian English, Chris Rinehart, Georgia Tech

GOAL: Demonstrate a Guided Spinning Projectile using MAFC Technology

Objectives:

- 1. Demonstrate MAFC control authority and guidance algorithm for a medium caliber munition
- 2. Provide a suite of validated advanced design tools
- 3. Establish technology transitioning pathways for tactical systems

- ✓MAFC actuators
- ✓ Flow control concept for spinning projectiles
- ✓ Flight control algorithm
- \checkmark Initialization and INS for spinning projectile
- ✓ Compact, g-hardened electronics and packaging

✓ Design Tools: Integrated CFD and Flight Dynamics

Georgia Tech Research

Aerodynamics Flight Tests

Predicted Mass properties Mass: 171 grams cg from nose: 44 mm Iaxial: 354.7 g*cm² Itrans: 806.4 g*cm²

Simulator

Classic Spin Stabilized Yaw Helix Looking Down Range

Transient Flow Behavior

Phase-locked PIV images acquired over first 12 milliseconds $(T_{act} = 1 \text{ msec})$

- Actuator runs for 6 cycles
- Starting vortex shed on first cycle
- Flow turning nearly complete after a few cycles
- Global effects completely developed in 1-2 convective time scales

Continuous Synthetic Jet Circulation Control

D = 80 mm U₀ = 37 m/s α= 0° Uj = 31 m/s Without Spin f= 1000 Hz

Virtual Fly-Out Visualization

Institute

Full 3-D Dynamic Structural Analysis of SCORPION Projectile During Launch

Control Electronics Calibration and High-G Ground Experiments

Spin simulated to initiate maneuver

Simulating Magnetic Field

High-G Shock (8,000 G's)

- Developed High-G packaging to survive launch acceleration. GTRI-supplied electronic boards.
- Unit functioned appropriately after shock

Before Shock

After Shock

Researcl Institute

Open Loop Electronics and Control System Assembly

Divert Flight Test Firing Protocol

- After launch, wait 0.5 seconds, then activate at maximum voltage at same roll angle each revolution.
- Activate for 1/4 revolution (about 4 diaphragm cycles) such that force generated will be horizontal (left or right, as selected)
- On approximately 4 ms, and off 12 ms each revolution

Actuator Timing

SCORPION ONBOARD SENSORS

Scorpion Test Results Dispersion With Closed Loop Control **Muzzle Velocity** Control Flight Configuration

Demonstrated Micro-Adaptive Flow Control for divert of subsonic guided 40 mm grenade

• Demonstrated Multi-disciplinary physics modeling – flew munition through the computer using High Performance Computing

- First divert ever of a spin stabilized munition system at 60 hertz spin rate
- Developed a miniature, G hard, on board flight control system
- Demonstrated initialization at muzzle exit Velocity Orientation
- Demonstrated open loop divert
- Demonstrated closed loop guidance to the target on major error source Velocity

• Cut on target dispersion due to muzzle velocity variation to one third of the system value

nstitute

Experimentally Demonstrated Novel Aerodynamic Control Methodology Capable of Diverting Medium Caliber Munitions

25mm Scorpion

Control Mechanism Module Inertial Sensor and Control Module

25mm Scorpion Projectile

Integrated Inertial Sensor and Control Electronics

Removable Micro-Squib Control Mechanism Module

17mm IMU (ARL) <u>tightly integrated</u> with processor (GTRI), power management (ARL/GTRI), interface hardware (GTRI), and control mechanism module (ARL)

Tightly Integrated IMU and Processor

Interface Electronics

25 mm Divert Video

- 25 mm Scorpion Completed
- 25mm instrumented projectile
- Driver board design
 - Addresses 6 actuators (limited by size)
- Single actuator maneuver
- Multiple actuator initiation
- Projectile recovery
- Reduced state flight software
 - Utilizes magnetometer and axial accelerometer
 - Algorithms need to develop and mature
 - Tradeoff between functionality (research instrumentation and control guidance...) and practicality (size, processor capability, & time/cost).

25mm ACSW With Combustion Actuator

- Designated and Moving Targets
- Munition Dispersion
 Control
- Designated and Moving Targets Long Term

XM307ACSW

Long Term

Dispersion Control Laser Designation Point Burst Kill **Multiple Burst Optimization Swarming Munitions Other Transition Opportunities** Sub-munition flight control **Smart Fuzing** Warhead dynamic orientation **BDA platform stabilization** Subsonic micro-missile roll control Future R & D Areas Laser Designation **Micro-Technology for Prox - Fuzing**

