Chemical and Biological Information Systems (CBIS) Conference & Exhibition

January 8 – 12 2007 Austin Texas

HAPPIE

THE DUTCH BALLISTIC MISSILE INTERCEPT

CONSEQUENCE SIMULATOR

Dr. Elena Abadjieva, Reinier Sterkenburg, François Bouquet, Peter Doup

OUTLINE

- Introduction
- Description of the models chain present status
- Development of new sub-models project in progress
- Applications

Ballistic missile intercept consequence simulation

Warhead with submunitions **Bulk warhead** Aero-dynamic warming up? gent phase transformation TNO Defence, Security and Safety The Netherlands

INPUT

MIR
Missile intercept report

CDR
Chemical wind report

BWR Basic wind report

HAPPIE

OUTPUT

Ground effects
NBC2
NBC3

Meteo Model

- Monte Carlo procedures simulate the wind direction, the wind speed and the Pasquill class (generate a systematic frequency distribution of the three meteo parameters)
- Sigma=-a*In(u)+b, gaussian distribution of the wind direction, u is the predicted wind speed
- To generate Meteo conditions we randomly combine: wind speed, wind direction and Pasquill class
- All combinations of Meteo conditions form an ensemble with a representative frequency distribution
- Experimentally validated based on 20 months hourly observations and predictions at 30 meteorological stations

Dispersion model

Puff definition

$$C(x, y, z, t) = m(t) \cdot E_x \cdot E_y \cdot E_z$$

$$E_{x} = \frac{1}{\sqrt{2\pi} \cdot \sigma_{x}} \cdot \exp\left(-\frac{(x - x_{c})^{2}}{2\sigma_{x}^{2}}\right)$$

C(x, y, z): mass concentration at location (x, y, z) x_c y_c z_c : co-ordinates of the centre of the puff m(t): mass contained in the puff $\sigma_{\rm x} \ \sigma_{\rm y} \ \sigma_{\rm z}$: standard deviations of the mass distribution

Puff expansion

$$\sigma_{xy} = f(x, a, b, u(z_i))$$

$$\sigma_z = f(x, z_0, c, d)$$

x - travel distance

a,b,c,d - Pasquill stability class dependent constants

u - wind speed at height z

z₀ – terrain roughness length

Concentration

$$C(x, y, z, t) = \sum_{i} C_{puff,i}(x, y, z, t) + \sum_{j} C_{plume,j}(x, y, z, t)$$

$$G(x, y, t) = \int_{-\infty}^{\infty} C(x, y, z, t) dz$$
 Dosage

$$D(x, y, z, t) = \int_{0}^{t} C(x, y, z, \tau) d\tau$$

Evaporation models

Evaporation of falling drops

$$\frac{dm}{dt} = -2\pi RDShC_S$$
R - drop radius
D - diffusion coefficient

R – drop radius

Cs – saturation concentration at Ts

Ts – drop surface temperature

$$Sh, Sc, Nu, Pr, Re = f(\eta, k^{air}, c_P^{air}, T^{air}, D, \rho^{air})$$

Secondary evaporation from the surface - the old Monaghan model

$$q_1 = m_i \cdot \frac{1 - f_{ss}}{t_{ss} - t_{imp}}$$

 q_1, q_2, q_3 - evaporation rates in the three phases

$$q_2 = m_i \cdot \frac{f_{ss} - f_{te}}{t_{te} - t_{ss}}$$

timp - remaining liquid fraction at drop's impact time $q_2 = m_i \cdot \frac{f_{ss} - f_{te}}{t_{te} - t_{ss}}$ f_{ss} - at drop's steady state time

 f_{te} - at the total evaporation time

$$q_3 = 0$$

DEBRIS submunition behaviour model

- Trajectory analysis
- Aerodynamic heating of the submunitions:
- Shape and material of the submunition
- Available thermal protection coating
- > Type of the agent
- Ejection velocity
- ➤ Height of release
- Heating and thermal demise of agent contained in the submunition
- Convection model
- Agent properties studies

Break-up model – in progress

DEBUT 06: Drop Evaporation and Break-Up Tool

It calculates:

- Agent cloud dimensions
- Drop size distributions
- Initial mass loss due to evaporation
- Validation on-going (experiments due in 2007 / 2008)

To be developed also for non-Newtonian liquids

An missile intercept exercise performed within JPOW IX

Ground effect calculation after an missile intercept performed within JPOW IX

