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Goals

• Use an ensemble of MET models to provide 
HPAC/SCIPUFF with MET uncertainty 
information to account for uncertainty in 
AT&D computations

• Study applicability of a new efficient linear 
calibration method to compute these MET 
uncertainty inputs to HPAC/SCIPUFF
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Motivation

• The variability and correlation of MET errors have 
important implications to AT&D predictions

• MET uncertainty information can already be input to 
SCIPUFF through wind variance matrices (UUE, 
VVE, UVE) and the Lagrangian length scale (SLE)

• Running an ensemble of AT&D models based on the 
MET ensemble to represent the uncertainty may not 
be practical for operations

• When an ensemble of AT&D models is not possible, 
an efficient way to pass MET uncertainty information 
from the MET ensemble into the single AT&D model 
solution is needed
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Motivation

UUE = 100 m2/s2

UUE = 1  m2/s2

Probability of concentration
Greater than 10-20 kg/m3

Constant SLE = 109 km
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Motivation

SLE = 27 km

SLE = 164 km

Probability of concentration
Greater than 10-20 kg/m3

Constant UUE = 0.4 m2/s2
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Methodology

• Use bootstrap sampling
• Bin results based on the predictor value, 

following Roulston (2005)
• Analyze plots for a simple relationship (linear) 

to be used as a calibration to ensemble data
• Utilize existing available ensemble data 

(SREF-ETA) to assess the promise of the 
technique
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Methodology – 
Binning Procedure

Points binned into groups of 1000
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Methodology – 
SREF Ensemble Data

• 25 August to 15 September 2004 (22 days, 
44 ensemble sets)

• Two runs per day (09 UTC and 21UTC)
• Forecasts for 12, 24, 36, 48 and 60 hrs 

considered
• 10 ETA members (32-km resolution)
• 0-hr forecast of ETA-ctl1 used as verification
• U and V winds “15 hPa AGL” (~150 m) used
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Methodology – 
SREF ETA Members

Case Name Convection Microphysics Breeding IC

Eta_ctl1 BMJ OpFer -

Eta_ctl2 KF OpFer -

Eta_n1 BMJ OpFer Eta_ctl1

Eta_n2 KF OpFer Eta_ctl2

Eta_n3 BMJ-SAT OpFer Eta_ctl1

Eta_n4 KF-DET ExFer Eta_ctl2

Eta_p1 BMJ OpFer Eta_ctl1

Eta_p2 KF OpFer Eta_ctl2

Eta_p3 BMJ-SAT OpFer Eta_ctl1

Eta_p4 KF-DET ExFer Eta_ctl2

BMJ: Betts-Miller-Janic

 

KF: Kain-Fritsch  SAT: Sat. Profile  DET: Full Detrainment
OpFer: Operational Ferrier Micro  ExFer: Experimental Ferrier Micro
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Linear Variance Calibration
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( )s ij is the value of a scalar field at point (i,j)

( )( )EVar s ij is the Ensemble Variance of s at point (i,j)
is the Actual Variance of s at point (i,j)( )( )AVar s ij
is the number of ensemble membersN
is the scalar value of a single ensemble memberms
is the scalar value of the verificationvs
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Linear Variance Calibration
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Linear Variance Calibration

24 Hour Forecast
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Linear Variance Calibration

36 Hour Forecast
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Linear Variance Calibration

48 Hour Forecast
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Linear Variance Calibration

60 Hour Forecast
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Linear Variance Calibration
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Linear Variance Calibration
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Linear Variance Calibration

36 Hour Forecast
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Linear Variance Calibration

48 Hour Forecast
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Linear Variance Calibration
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Linear Covariance Calibration

uncorrelated errors

correlated errors

(Roulston 2005b)
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Linear Covariance Calibration
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is the Actual Covariance of s between (i,j) and (k,l)( )( )AVar s kl
is the number of ensemble membersN
is the scalar value of a single ensemble memberms
is the scalar value of the verificationvs
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Linear Covariance Calibration
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Linear Covariance Calibration
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Linear Covariance Calibration
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Linear Covariance Calibration
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Linear Covariance Calibration
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Linear Covariance Calibration
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Linear Covariance Calibration - 
Control

12 Hour Forecast
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Linear Covariance Calibration - 
Control

24 Hour Forecast
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Linear Covariance Calibration - 
Control

36 Hour Forecast
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Linear Covariance Calibration - 
Control

48 Hour Forecast
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Linear Covariance Calibration - 
Control

60 Hour Forecast
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Linear Covariance Calibration - 
Control
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Linear Covariance Calibration - 
Control
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Linear Covariance Calibration - 
Control
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Linear Covariance Calibration - 
Control

48 Hour Forecast
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Linear Covariance Calibration - 
Control

60 Hour Forecast
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Linear Covariance Calibration

• Linear Covariance Calibration may work, but 
there is currently no direct route for ingesting 
covariance information in SCIPUFF

• However, spatial variability is related to the 
Lagrangian time scale, so perhaps we could 
find a way to use covariance information that 
CAN be used for SCIPUFF…
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Relating Correlation and Distance
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Relating Correlation and Distance
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Relating Correlation and Distance
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Limitations of a Single AT&D Run

Group 1

Group 2

Group 2

Group 1

No amount of broadening of a single plume can accurately predict

 

the shape and extent of 
the hazard area for these bimodal cases!   Covariance information can be combined with 

an AT&D ensemble to provide a more accurate prediction. 

Hazard Area using
Ensemble Mean and

Error Variances

Hazard Area using
Single Member and

Error Variances

Sea Breeze Channeled Flow
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Conclusions

• The Roulston (2005) binning method allows us to recover 
potentially useful relationships from highly scattered data by 
binning similar points predictor values.

• When applied to ensemble variances, this method allows us to 
identify a simple, computationally inexpensive, linear 
relationship between the ensemble variance and actual variance 
that can be used to calibrate ensemble output for use in 
SCIPUFF.

• When applied to ensemble covariances, the binning technique 
reveals more diffuse and less linear plots, however the actual 
covariance range is much smaller than the ensemble covariance 
range.  If a control member is used rather than an ensemble 
mean, a clear linear relation is recovered.

• There is a clear relationship between distance separation and 
ensemble spread correlation.  The exact length scale depends 
on the correlation value you choose as a cutoff; a 0.2 cut-off 
yields a distance length of ~500km for 15 hPa AGL winds
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Future Work

• Examine the capability of the linear calibration method with an 
ensemble more tuned for PBL parameters

• Explore dependence (if any) on grid resolution and domain size
• Increase the length of the training period and determine any 

seasonal divisions needed
• Evaluate the effectiveness for other variables and levels, 

including p-level vs. σ-level considerations
• Continue investigating the use of covariance/distance binning 

for calculating SLE
• Test implementation of the calibration by using it to calculate 

UUE for SCIPUFF and compare to SCIPUFF ensemble
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