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Motivation

• Many physics-based atmospheric transport and dispersion (AT&D) 
models, e.g. SCIPUFF, derive their transporting wind field from 
meteorological (met) models – met model winds

• These AT&D and met models are sophisticated interplays of 
physics and parameterizations that have evolved over many years 
– good T&D models

• Given adequate initial and boundary conditions, these models can 
successfully reproduce dispersion episodes – sensitive to ics & bcs

• In a limited domain model, an ensemble of simulations can be used 
to include the statistical effects of large-scale (outer) variability – 
dispersion uncertainty arises from met ensemble uncertainty
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Background

NRC, “Tracking and Prediction Atmospheric Dispersion of Hazardous Material Releases”

• Realization 
The actual wind field 
for a dispersion event

• Conditional Statistic 
Reduced uncertainty 
through NWP skill

• Statistic 
Ensemble Mean Plume
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Background

NRC, “Tracking and Prediction Atmospheric Dispersion of Hazardous Material Releases”

• Realization 
The actual wind field 
for a dispersion event

• Conditional Statistic 
Reduced uncertainty 
through NWP skill

• Statistic 
Ensemble Mean Plume

Meteorological-model ensemble uncertainty 
depends on Numerical Weather Prediction 

(NWP) skill.

• Data assimilation can minimize this uncertainty.
• This uncertainty cannot be diagnosed directly 

from subgrid parameterizations, climatological 
variability, or traditional turbulence modeling 
approaches. 
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Goal and Approach/Outline

To parameterize meteorological model uncertainty for dispersion

• Representation
– Evaluate meteorological model uncertainty from meteorological 

model ensemble variability
• Theory

– Use Taylor dispersion arguments applied to ensemble dispersion 
to define the uncertainty modeling parameters

• Evaluation
– Diagnose the uncertainty parameters from ensemble data (this 

study & related work by Walter Kolczynski, PhD, PSU)
• Modeling

– Develop operational models for the uncertainty parameters
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The Meteorological Ensemble

A fair weather day in Oklahoma
• Ensemble 1: used to evaluate uncertainty modeling parameters

– A 29 member MM5 physics ensemble (PhD work of B. Reen, 
Penn State Meteorology) modeling the IHOP (International 
H2O Project) field experiment (light winds & precip.)

• Ensemble 2: used to motivate ensemble uncertainty
– Research ensemble (11 members) intentionally constructed to 

emphasize wind-direction variability
• Other Ensembles: “real-world” examples

– NCEP’s SREF operational data
– MM5 ensemble modeling the CAPTEX (Cross Appalachian 

Tracer Experiment) field study
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Baseline Member of Ensemble 2 
6 Hr Release of C7F14; 1 PM to 7 PM Local Time; 5/29/2002

MM5 wind field; SCIPUFF dispersion model 
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11 Member of Ensemble 2 
6 Hr Release of C7F14; 7 PM Local Time; 5/29/2002
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Members constructed to emphasize wind-angle uncertainty
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Baseline/Ensemble-Mean Plumes 
6 Hr C7F14 Release; 2 PM to 6 PM Local Time; 5/29/2002
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• Member- and mean-plume footprint 
differences depict effects of 
ensemble uncertainty.
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Effects of Wind Direction Variability 
6 Hr Release of C7F14; 6 PM Local Time; 5/29/2002
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• The mean-plume footprint is larger than the member plume 
footprint due to meteorological variability.

• The characteristic dispersion length, therefore, is larger.
• Planform differences between these plumes demonstrate the effects 

of meteorological uncertainty on dispersion.

Increased
Dispersion
Footprint
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Taylor-dispersion arguments can be used to relate dispersion 
uncertainty to meteorological model ensemble variability

• The theory describes dispersion in homogeneous environments.

• It isolates Lagrangian velocity and integral-time statistics as the 
relevant modeling parameters.

• They yield the ensemble-uncertainty model parameters. 

Relation to Dispersion Uncertainty
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Taylor Dispersion
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Taylor Dispersion 
6 Hr C7F14 Release; 2 PM to 6 PM Local Time; 5/29/2002

• The plume width parameter σ
 has linear and parabolic growth 

asymptotes

• A characteristic width 
parameter is
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Uncertainy modeling parameters
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• SCIPUFF parameters UUE, VVE, and UVE can be diagnosed 
from ensemble deviation-velocity fields

• The Lagrangian integral time can be diagnosed from Lagrangian 
particle trajectories through the meteorological model data

• SCIPUFF parameter SLE can be diagnosed from the ensemble 
deviation velocities and the Lagrangian integral time

– SLE ~ τL (UUE+VVE)1/2

• Direct evaluation of these parameters from meteorological data 
provides the “truth” for modeling efforts.

Uncertainty Parameters
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Trajectories
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Lagrangian Particle Histories

• Lagrangian Particle Data (Ensemble Members – black, Ensemble 
Mean – Red)

Fewer members with increasing time
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IHOP Physical-Modeling Ensemble
MM5 Simulations: 39 Members, 24 hour simulation

4 km spatial resolution, 1 hour Temporal Resolution
The two-point Lagrangian Correlation Function is

formed by averaging over the 39 ensemble members and
over 165 point releases (55 at 10 m, 55 at 100 m,

and 55 at 500 m). The first 0 crossing is at
15.3 hours. The Lagrangian Integral Time is

2.34 hours when integrating to 24 hours and is
2.87 hours when integrating to the first 0 crossing.

Lagrangian Particle Correlations

• The Lagrangian correlation 
functions were computed

– Ensemble averaging for each 
release location and

– Spatial averaging over release 
locations at the same height (to 
increase the sample contributing 
to the statistic) 

Lateral Velocity 
Correlation Function

Particle release at 1 PM local time

Mixed layer
Near suface & ZI
Above BL
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Lagrangian Integral Times

• By extrapolating the 
correlation curve to 0 
followed by integration, 
estimates for the Lagrangian 
Integral Time, τL , as a 
function of height can be 
computed:

These data indicate that τL is 
larger than 6-8 hours
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IHOP Physical-Modeling Ensemble
MM5 Simulations: 39 Members, 24 hour simulation

4 km spatial resolution, 1 hour Temporal Resolution
The two-point Lagrangian Correlation Function is

formed by averaging over the 39 ensemble members and
over 165 point releases (55 at 10 m, 55 at 100 m,

and 55 at 500 m). The first 0 crossing is at
15.3 hours. The Lagrangian Integral Time is

2.34 hours when integrating to 24 hours and is
2.87 hours when integrating to the first 0 crossing.

Lateral Velocity Correlation Function

τL > 6 to 8 hours
τL > 2 hours
τL ~ 1.5 hours
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SLE
• Using τL ~ 6-8 hours, a field 

of SLE can be computed.
• The definition for SLE is a 

function of time and space.
• For this case,

0.0 km < SLE < 200 km

large/small values depend on 
the local deviation velocities 
(on the uncertainty)

IHOP Great Plains Model 
6 Hr C7F14 Release; 7 PM Local Time; 5/29/2002
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SCIPUFF (Hazard Mode)

Ensemble Mean Baseline SLE=200 Km

τL =7.0 Hrs τL =14.0 Hrs τL =24.0 Hrs
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Summary

• Taylor-dispersion arguments relate meteorological model 
variability to dispersion uncertainty

– Modeling parameters depend on Eulerian ensemble deviation- 
velocity statistics and on the Lagrangian Integral Time

• Evaluation of the modeling parameters using a meteorological 
physics ensemble suggests

– A Lagrangian Integral Time > 6 to 8 hours yielding SLE 
ranging from < 1 km to ~200 km under low wind & light rain

• Evaluation using SCIPUFF is ongoing. 
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Continued Work

• Further evaluation of the ensemble variability modeling parameters 
for geometrically and meteorologically complicated cases

– CAPTEX (Cross Appalachian Tracer Experiment) field 
experiment

– NCEP’s SREF ensemble with weather and topography

• Model the uncertainty parameters using these meteorological- 
ensemble-computed fields as “truth”

– This project
– 2-point spatial correlations (W. Kolczynski/D. Stauffer, PSU)
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