Modelling Medical and dstl Operational Effects of **CBRN Usage**

Oliver Lanning & Deb Fish

Defence Science and Technology Laboratory, UK

© Crown Copyright 2007. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.

UK UNCLASSIFIED

Introduction

- Decision support tools are developed to predict the effect of CBR events on personnel, equipment and operations
- Tools, such as JOEF and the MOD's Virtual Battlespace, can be used to
 - support the equipment acquisition programme
 - aid pre-operational planning
 - assess the operational implications of concepts, doctrine and technology development
 - guide the research programme
 - aid CBRN training
- This talk will focus on recent work on casualty modelling, quantifying uncertainty and modelling operational effects

What is the Virtual Battlespace?

- A synthetic environment including (some under development)
 - State-of-the-art dispersion models (UDM & SCIPUFF)
 - Models of CBR defence system (detection, protection, MCMs)
 - Representation of movement of entities (aircraft, army units)
 - Links to combat & facility models (WISE, OneSAF, STAFFS)
 - Multiple run controller
 - Wargaming mode

The Virtual Battlespace Models

- Dispersion Modelling
 - CBR sources and hazard plumes (weapons, IEDs, RDDs, TICs & TIMs)
 - Urban and Rural (SCIPuff & UDM)
 - Concentration Realisation
- Meteorology
 - Terrain
 - Local Wind Turbulence
 - Sea Breeze

- Military Units/Personnel
 - Effects (casualties)
 - Inhalation & Contact Hazard (liquid pickup)
 - Medical Countermeasures
 - IPE
 - Physiological Burden
 - Aggregation
 - Value of Information
- Detectors
 - Simple (threshold)
 - Generic
 - Specific
 - Standoff
 - Biological Background
 - Single & Network Alarms
- Modes of Use
 - Wargaming
 - Assessment

Casualty Modelling

- Modelling physiological effects of a CBR attack or incident is crucial
 - Need to account for both inhalation and percutaneous ingestion of agent
 - Should include individual protection
 - Respirator
 - Suit
 - Predict effects of medical countermeasures
 - Nerve agent treatments
 - Vaccines
 - Antibiotics
 - Antitoxins/Antivirals

30 March 2007

Medical Countermeasures (MCMs)

- The time to onset of symptoms is crucial for biological MCMs
 - Symptoms typically present days after exposure
- The efficacy of antibiotics, antivirals and antitoxins are strongly time dependent
- Therefore, the model accounts for the time that these MCMs are administered
 - Window of opportunity
 - Can assess concepts and doctrine and medical response

30 March 2007

Time to onset and duration of symptoms

- Modelling the time to onset of symptoms can allow realistic training scenarios to be run
 - Commanders do not discover covert biological release until medical surveillance triggers
 - Speed of response then determines the effectiveness of treatment
 - Allows investigation of effect on operational outcome

Contact Hazards

- Both liquid and vapour hazards
- Data available from Porton Man
 - Helps drive research on future clothing

Operational Effects

- The Virtual Battlespace predicts the impact of CBRN on personnel, equipment and terrain
- Drive to determine the effect of CBRN on the operation & campaign
- In general, this will be done by linking or inputting to appropriate high-level modelling tools
 - This can include both simulations and wargames
 - Physical link was investigated to UK WISE (formation level simulation)

Operational Effects

- Initial focus on sea ports
- Using CBR Virtual Battlespace (CBVB) to determine effects of CBR attacks
 - Casualties
 - Contamination
- 17th Port & Maritime Squadron will advise on work arounds
- Quantify effects on logistics chain using the Dstl Marflow model for EDPI

Effect of CBRN on Peace Support

- Aim to develop capability to use CBVB to quantify effects of CBRN on Peace Support Operations (PSOs)
- Existing Dstl computer assisted wargame PSOM determines outcome of PSO
 - CBVB can determine casualties and contamination as input to PSOM
 - This then impacts on all members of the game
 - Can run scenarios with and without CBRN for comparison

Impact on Operational Outcome

- The Virtual Battlespace will be used to provide input for table top wargames
- Model dispersion of covert biological attack
 - Casualty chain will provide time to onset of symptoms for all exposed individuals
 - Commander will start to see units report illness
 - Medical response determines combat effectiveness

Conclusions

- A new casualty model chain has been developed
 - This accounts for
 - Respirator and suit
 - Medical countermeasures
 - Time to onset of symptoms and efficacy of MCMs
- The casualty models allow, in combination with other tools, for the operational effects of CBRN to be determined
- This provides invaluable pre-operational planning and training opportunities

