Click Here to upgrade to Unlimited Pages and Expanded Features

Systems Engineering

- How Future Trends in Systems and Software Technology Bode Well for the Rapid Adoption of CMMI

CMMI Technology Conference and User Group
November 12-15, 2007
Investigation, Measures and Lessons Learned about the
Relationship between CMMI Process Capability and Project or
Program Performance
Hyatt Regency Tech Center- Denver, CO
Systems and Software Technology – Enabling the Global Mission

Dr. Kenneth E. Nidiffer
Director of Strategic Plans for
Government Programs
nidiffer@sei.cmu.edu
703.908.1117

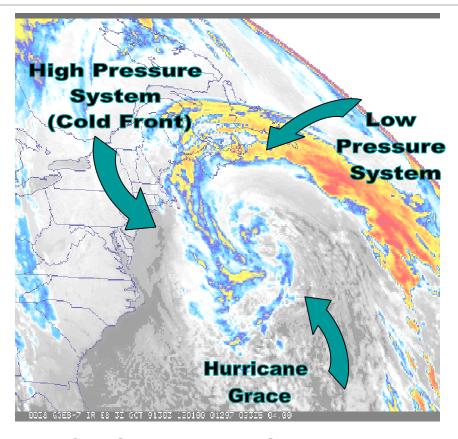
neering Institute - Improving the Practice ering: Create, Apply and Amplify

Federally Funded Research and Development Center

Created in 1984

Sponsored by the U.S. Department of Defense

Locations in Pittsburgh, PA; Washington, DC; Frankfurt, Germany


Operated by Carnegie Mellon University

- Environmental Challenges
 - É Development
 - É Acquisition
- Storms of Change
 - **ó Human Element**
 - **ó Project/Risk Management**
 - ó Communications
- Warning Signs
- Concluding Comments

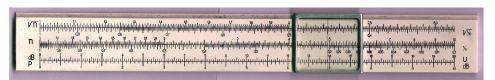
"Perfect Storm" Event, October 1991 National Oceanic & Atmospheric Administration

enges: Software Engineering Trends That gineering*

Traditional

Future

Standalone systems	Everything connected-maybe
Mostly source code	Mostly COTS components
Requirements-driven	Requirements are emergent
Focus on software	Focus on systems and software
Premium on cost	Premium on value, speed, quality
Stable requirements	Rapid Change
Control over evolution	No control over COTS evolution
Staffing workable	Scarcity of critical talent


Trends provided by Don Reifer, REIFER CONSULTANTS, INC.

Click Here to upgrade to Unlimited Pages and Expanded Features

enges: Augustine's Law – Growth of Magnitude Every 10 Years

In The Beginning

1960's

F-4A 1000 LOC 1970's

F-15A 50,000 LOC 1980's

F-16C 300K LOC 1990's

F-22 1.7M LOC 2000+

F-35 >6M LOC

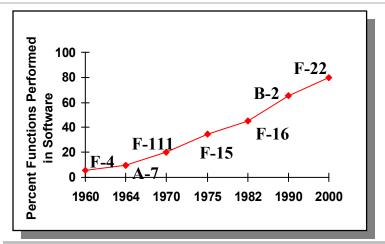
e En

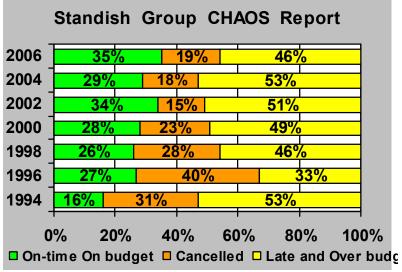
ds in Systabling the idiffer

ology

Illenges: Relationship Between Complexity Juccess Improving But Not Enough!

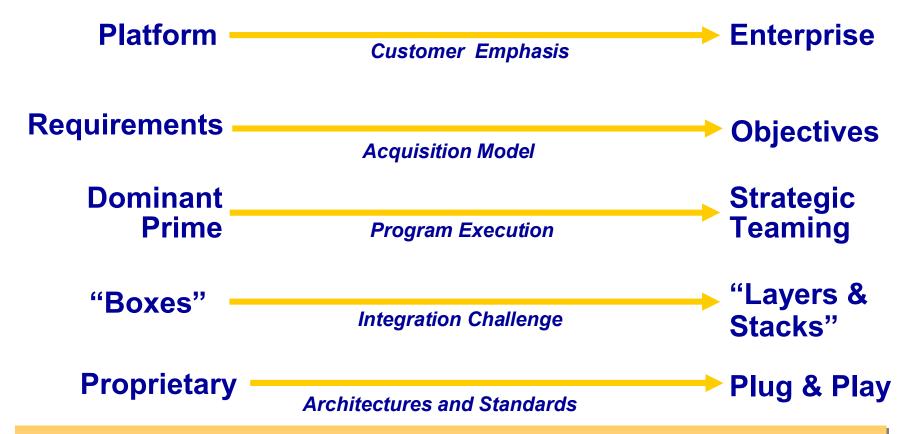
Software is Growing in Complexity


É80% of some weapon system functionality is dependent upon software¹ ÉConsequences of software failure can be catastrophic


Software Acquisition is Difficult

É46% are over-budget (by an average of 47%) or late (by an average of 72%)²
ɉuccessful projects+have 68% of specified features²

Software is Pervasive

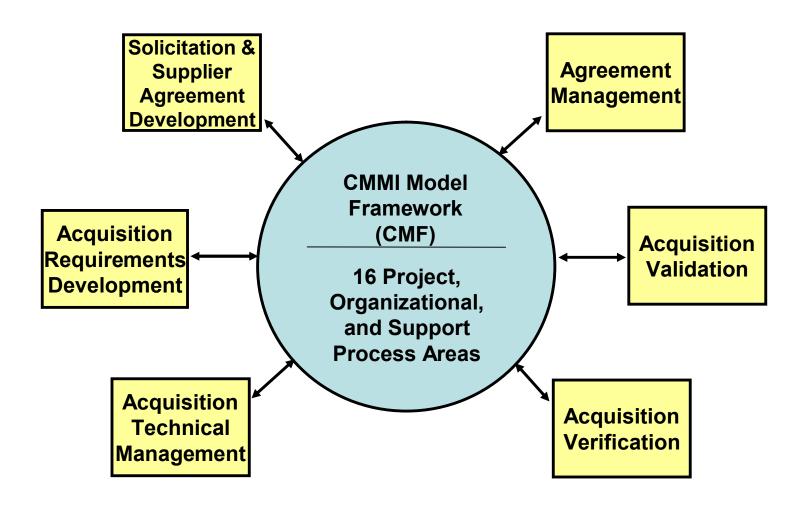

ÉIT Systems, C4ISR, Weapons, etc

ges: Some Drivers That Increase the ring Software-Intensive Systems

The emerging dynamic is to address both sides, and do so with compressed delivery schedules via improvements in systems/software engineering

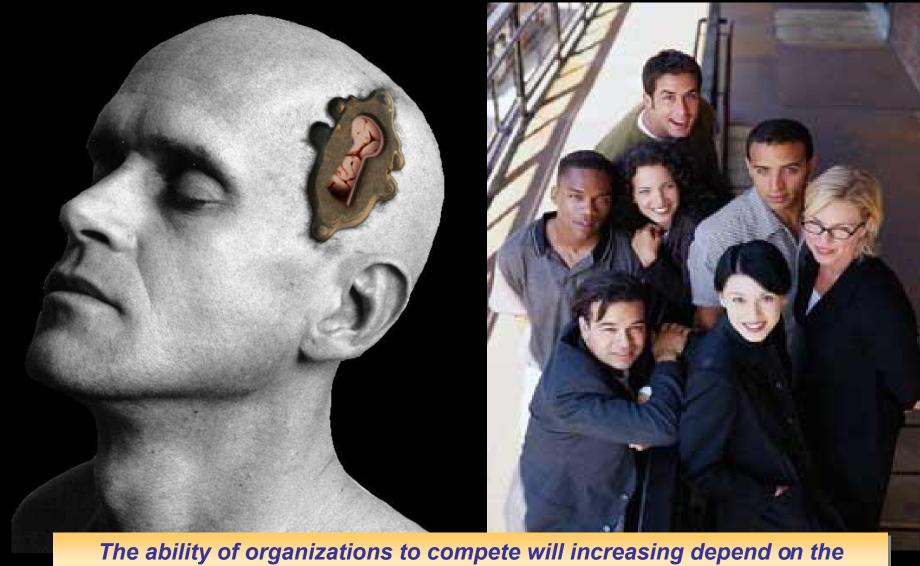
d Acquisition Challenges:

Civilvii Constenations


CMMI-Dev provides
guidance for
measuring,
monitoring and
managing
development
processes

CMMI-ACQ
provides guidance
to enable
informed and
decisive
acquisition
leadership

16 Core
Process Areas,
common to all
CMMI-DEV CN

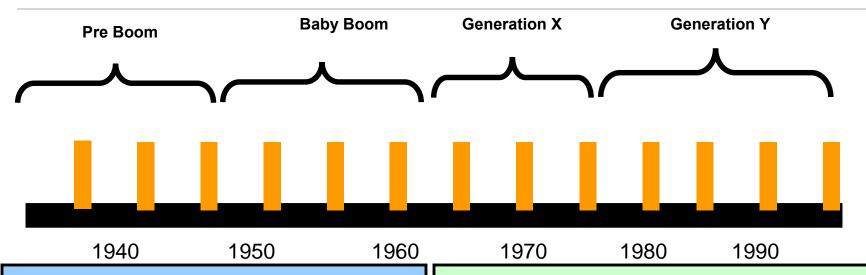

CMMI-ACQ

gory Process Areas (Released Nov)

Click Here to upgrade to

innovation of the human element

he Demographic Context...


- ^{*} A shrinking pool of experienced workers.
 - É 42% decline from 1990 peak (AIA Employment Database)
- Consolidation left our industry with a mature workforce.
 - É 54% over age 45 (BAH Study)
- " Engineering enrollment trends are down.
 - É 15% decline since 1991 (National Science Foundation Indicators)
- "Brutal competition for technologists.
 - É Demand for experienced engineers is projected to increase by 97% between 1998 and 2008. (US Bureau of Labor Statistics)

A key challenge is how to transform the workforce to meet demand

re Generation Y Workers Will Enter the

YYOI KPIACE

Unlimited Pages and Expanded Features

Generation Y Characteristics

"Born late 1970s to mid-1990s

"Larger than Generation X

"More ethnically diverse

"Technologically savvy

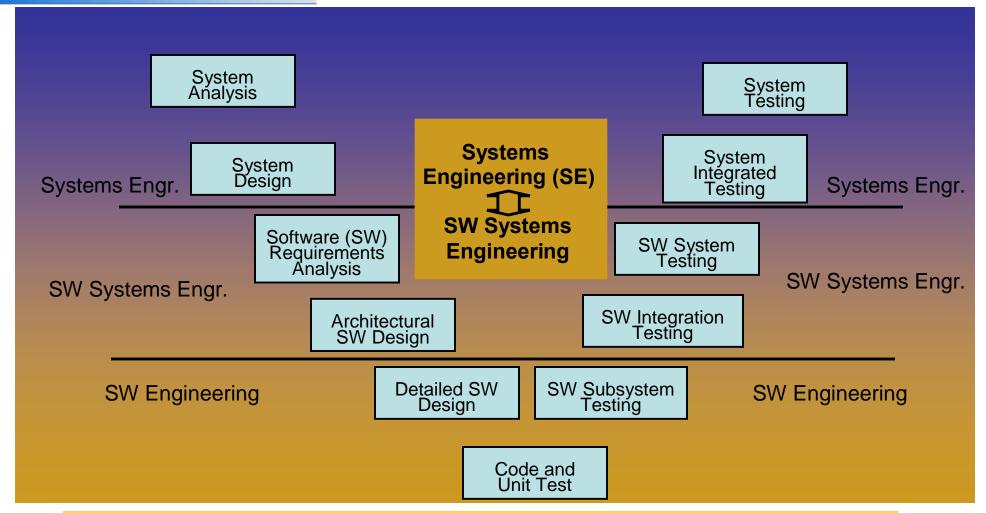
What Makes Generation Y Tick

- "High Expectation of Employers
- "Goals, Goals, Goals
- Desire for Immediate Responsibility

© 2007 Carnegie Mellon University

"Balance and Flexibility

Source: Cara Spiro, DAU, 2006


Software Engineering Institute

Carnegie Mellon

How Future Trends in Systems and Software Technology Bode Well for Enabling the Rapid Adoption of CMMI₁₂ Dr. Kenneth E. Nidiffer

Click Here to upgrade to

urrent Trends is for Software and Systems ome More Integrated Versus Separated

OSD Initiative: Integrated Software and Systems Engineering Curriculum

Software and Systems Engineering ject (iSSEc)

- Creating a Reference Curriculum for Graduate Software Engineering Education
- •iSSEc is sponsored by DOD and led by Stevens, involving 4 sets of stakeholders:
 - The industrial and government workforce who are the customers of SWE graduate education
 - Academics who provide SWE and SE graduate education
 - Professional societies with a vested interest in SWE and SE graduate education
 - Government organizations who fund improvements in SWE graduate education
- •iSSEc recognizes that the divide between systems and software engineers in industry, government, and academia works against successfully delivering modern systems in which software is almost always central.
- •iSSEc will integrate SE principles and practices into the SWE curriculum.

Performance - Flexible Boundary-

Click Here to upgrade Crossing Acquisition Structure

Demands/ **Purposes**

Anticipated

Unanticipated

Multiple

Autonomous Governance **Entities**

Directed Collaboration

(Type II Agility)

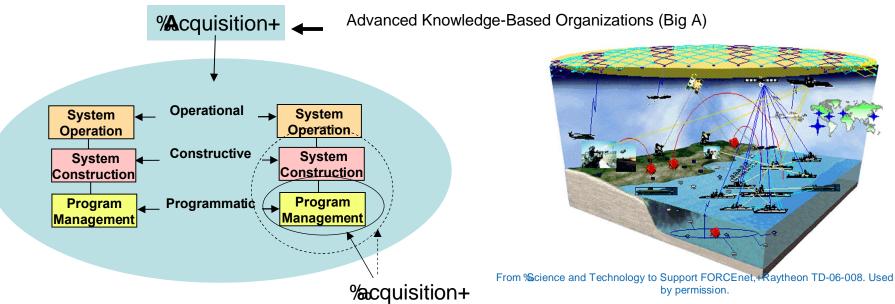
Directed (Type I Agility)

Distributed Collaboration

(Type III Agility)

Directed

(Type I Agility + Contingency Planning)


Forms of Collaboration from "Architecting Principles for Systems of Systems", by Mark W. Maier http://www.infoed.com/open/papers/systems.htm

rformance - Flexible Boundary-Crossing ture

2005 study confirmed*:

- "In advanced knowledge-based organizations, managements desire for the flow of knowledge is greater than the desire to control boundaries
- "Unlike the matrix organization, there is less impact on the dynamics of formal power and control
- "Important to measure the system in terms of user performance
- * Using Communities of Practice to Drive Organizational Performance and Innovation, 2005, APQ study

Ref: Jim Smith, (703) 908-8221, jds@sei.cmu.edu

t: Increased Focus on Doing More

WILII LC33

Random motion. lots of energy, not much progress

No teamwork . individual effort

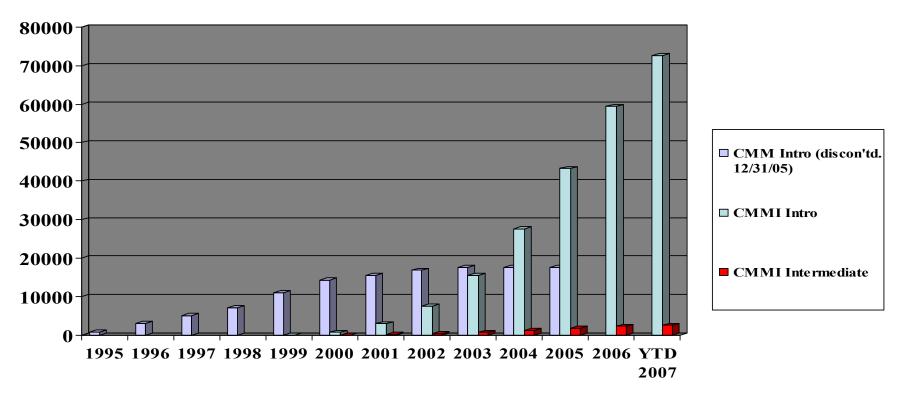
Frequent conflict

You never know where youdle end up

Directed motion . every step brings you closer to the goal

Coordinated efforts

Cooperation


Predictable results

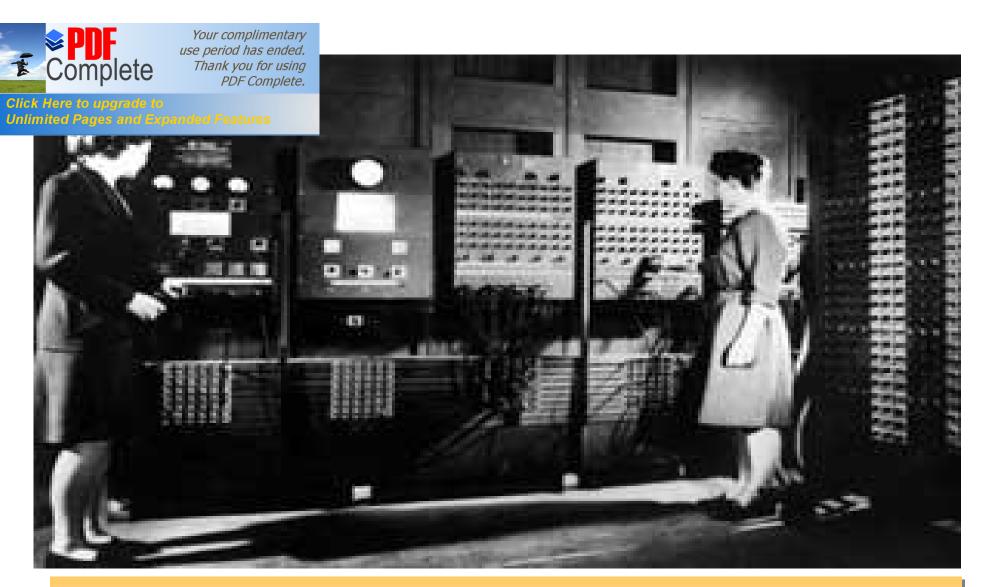
Processes Can Make the Difference

© 2007 Carnegie Mellon University

MM and CMMI Technology Transfer Trends

Intro to the CMM and CMMI Attendees (Cumulative)

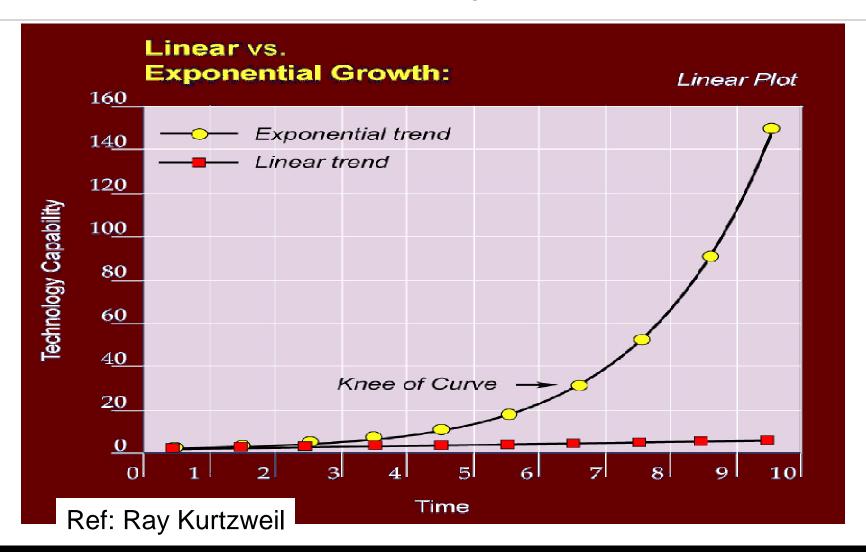
8-31-07



Click Here to upgrade to

nent – Effectively Managing Risk

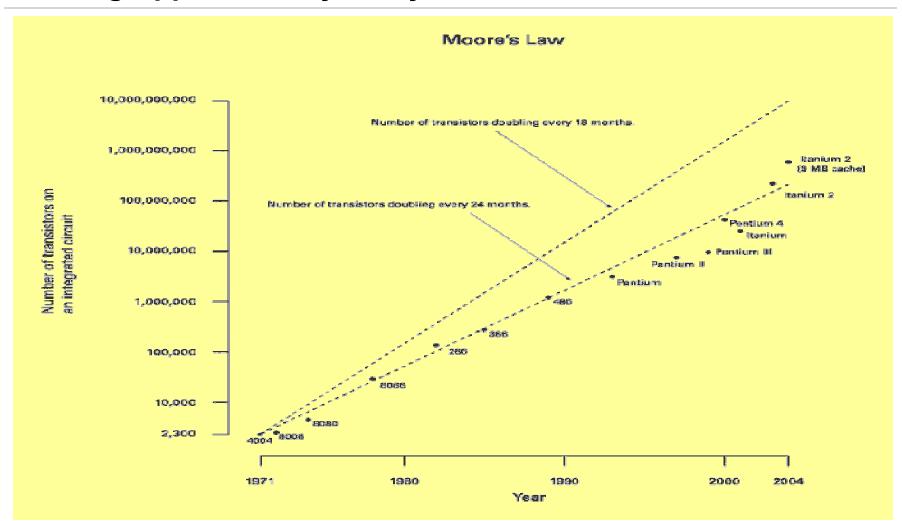
A key challenge is how to obtain a better alignment of risk among the key stakeholders who often leverage technology



Greater Demand for Improvements in Project Performance
What Got us Where We Are
Won't Necessarily Get us Where We Need to Be!

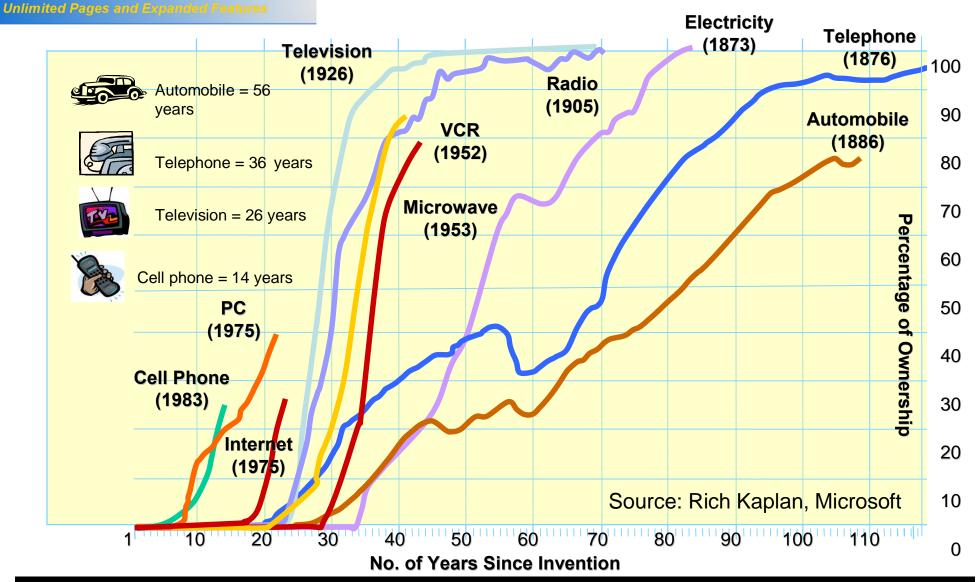
Unlimited Pages and

Acceleration of Innovation in the 21st Century - ness and Society



© 2007 Carnegie Mellon University

Click Here to upgrade to


ation: Moore's Law - The Number of n be Placed on an Integrated Circuit is

Doubling Approximately Every Two Years

Click Here to upgrade to

PDF Complete. eration: Increased Technology Rate of

© 2007 Carnegie Mellon University

Project Management (Especially the Acquirer) to ively Navigating the Green/Acquisition Space

Navigating the "Green Space"

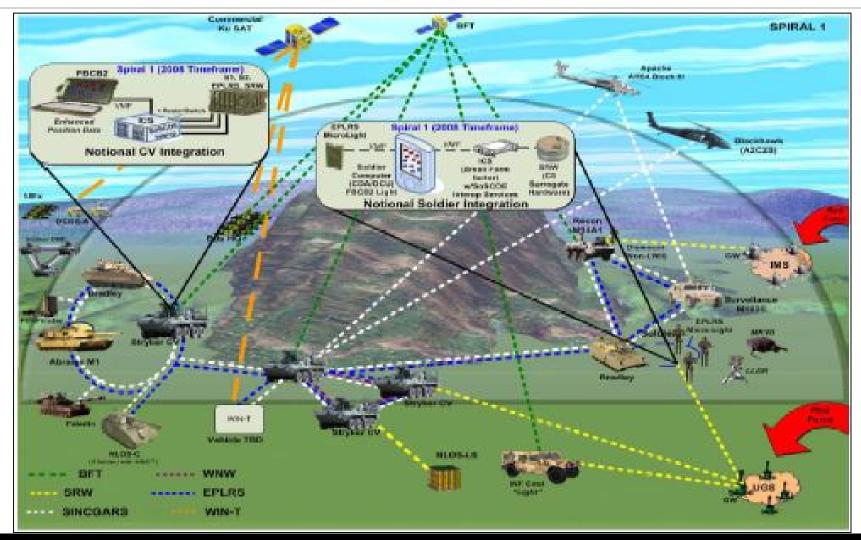
Risk-Reward Preferences High Industry Increasing gap between Industry's acceptable risk/reward ratios (dashed line) and Reward the reality of the marketplace (solid line) The "Green Space" Negotiate defines the area where Gov't industry initiatives must provide a payoff by Low reducing risk and/or increasing reward. Risk High Low Acquisition changes based on previous legislation

©2005 Systems and Software Consortium, Inc.

have introduced new levels of risk.


Source: Nidiffer and Dolan, IEEE Software, Sept/Oct 2005

isals and Maturity Levels El by Country


	Number of	Maturity Level 1	Maturity Level 2	Maturity Level 3	Maturity Level 4	Maturity Level 5		Number of	Maturity Level 1	Maturity Level 2	Maturity Level 3	Maturity Level 4	Maturity Level 5
Country	Appraisals	Reported	Reported	Reported	Reported	Reported	Country	Appraisals	Reported	Reported	Reported	Reported	Reported
Argentina	19	No	Yes	Yes	Yes	Yes	Korea, Republic O	78	Yes	Yes	Yes	Yes	Yes
Australia	23	Yes	Yes	Yes	Yes	Yes	Latvia	10 or fewer					
Austria	10 or fewer						Malaysia	19	No	Yes	Yes	No	Yes
Bahrain	10 or fewer						Mauritius	10 or fewer					
Belarus	10 or fewer						Mexico	15	No	Yes	Yes	Yes	Yes
Belgium	10 or fewer						Morocco	10 or fewer					
	48	No	Yes	Yes	Yes	Yes	Netherlands	10 or fewer					
	26	No	Yes	Yes	Yes	Yes	New Zealand	10 or fewer					
Chile	15	No	Yes	Yes	No	Yes	Pakistan	10 or fewer					
China	240	Yes	Yes	Yes	Yes	Yes	Peru	10 or fewer					
Colombia	10 or fewer						Philippines	16	No	Yes	Yes	No	Yes
Czech Republic	10 or fewer						Portugal	10 or fewer					
Denmark	10 or fewer						Russia	10 or fewer					
Dominican Republic	10 or fewer						Singapore	10 or fewer					
Egypt	17	No	Yes	Yes	Yes	Yes	Slovakia	10 or fewer					
	10 or fewer						South Africa	10 or fewer					
	75	Yes	Yes	Yes	Yes	Yes	Spain	31	No	Yes	Yes	No	Yes
Germany	35	Yes	Yes	Yes	Yes	Yes	Sweden	10 or fewer					
Hong Kong	10						Switzerland	10 or fewer					
India	204	No	Yes	Yes	Yes	Yes	Taiwan	46	No	Yes	Yes	No	Yes
Indonesia	10 or fewer						Thailand	10 or fewer					
	10 or fewer						Turkey	10 or fewer					
Israel	10						United Kingdom	48	Yes	Yes	Yes	Yes	No
,	10 or fewer						United States	718	Yes	Yes	Yes	Yes	Yes
Japan	172	Yes	Yes	Yes	Yes	Yes	Viet Nam	10 or fewer					

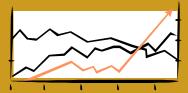
s in the Digital Spectrum Enables nmunication and Collaboration

* Friedman, Thomas L. "The World Is Flat", Farrar, Straus and Giroux, 2005

Connects Systems...

© 2007 Carnegie Mellon University

e of Modeling and Simulation า Unveils New Modeling and Simulation


Research Center

New Aviation Ship Integration Center, a state-of-the-art research facility established in partnership with the U.S. Navy to conduct modeling, simulation, research, development and in-depth analysis for CVN 21-class aircraft carriers and other aviation-capable ships.

Process Improvement

Data-Driven (e.g., Six Sigma, Lean)

Clarify what your customer wants (Voice of Customer)

É Critical to Quality (CTQs)

Determine what your processes can do (Voice of Process)

É Statistical Process Control

Identify and prioritize improvement opportunities

É Causal analysis of data

Determine where your customers/competitors are going (Voice of Business)

É Design for Six Sigma

Model-Driven (e.g., CMMI)

Determine the industry best practice

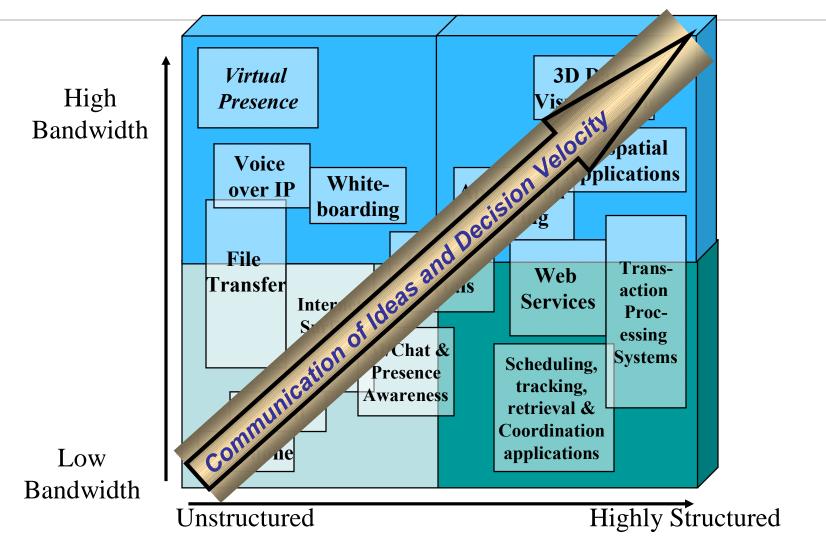
É Benchmarking, models

Compare your current practices to the model

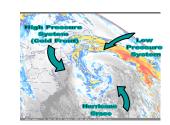
É Appraisal, education

Identify and prioritize improvement opportunities

- É Implementation
- É Institutionalization

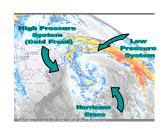

Look for ways to optimize the processes

Ref. Dr. Rick Hefner, Northrop Grumman



Click Here to upgrade to

vements in Collaboration Mechanisms ystem Engineering Success



are Engineering Trends That Bode to the Rapid Adoption of CMMI

- "Greater demands on systems and software engineers will stimulate growth in the field – nationally and internationally
- "Industry/Gov't will increasingly focus on attracting, training and retaining systems and software engineering talent short and long run with emphasis on providing a Generation Y work environment
- "Increased reliance on systems and software engineering processes and technologies to effectively manage the acquisition/"green" space
- "The laws of Augustine's and Moore will continue to hold and will continue to be a forcing function to bring the fields of software and systems engineering closer together
- "Improvements in program risk-reduction collaboration mechanisms will be significant enablers for increases in systems and software engineering communication and "decision velocity"

re Engineering Trends That Bode doption of CMMI

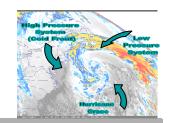
"Increased need for a large number of complex systems and systems of systems will lead to investments in research and technology

"Systems and software engineers will continually find way to innovative to reduce complexity

- 6 Increased importance of modeling and simulation
- ó Increased reliance on architectures (top-down and bottoms-up)
- ó Increased design for continuous evolution and deployment at all levels will occur
 - Understanding users and their context will evolve, e.g. leaner system and software engineering process assets on projects

"Increased customer requests for system and software engineering support earlier in life cycle

"Shift of systems and software engineering focus from the platform to the networks


" Process improvement will continue to be important

Click Here to upgrade to Unlimited Pages and Expanded Features

eadings

Buckman, Robert H. Building a Knowledge-Driven Organization. McGraw-Hill, New York, NY, 2004.

Chao, Pierre A. "Alternative Futures for the Defense Industry." Center for Strategic & International Studies, Chantilly, VA, April 2005.

Chesbrough, Henry William. Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business School Publishing Corporation, Boston, MA 2003.

Drucker, Peter. Managing in the Next Society. Truman Talley Books, New York, NY, 2003.

Friedman, Thomas L. "The World Is Flat", Farrar, Straus and Giroux, 2005

Gates, William H. III "Business @ The Speed of Thought – Using a Digital Nervous System", Time Warner Books, 1999

Griswold, W.G. et al, "Modular Software Design with Crosscutting Interfaces." IEEE Software 23, January/February 2006

Malone, Thomas. The Future of Work: How the New Order of Business Will Shape Your Organization, Your Management Style and Your Life. Harvard Business School Publishing, Boston, MA, 2004. See http://ccs.mit.edu/futureofwork/

Nidiffer, Kenneth E. and Doland, Diana "Evolving Distributed Project Management", special issue <u>IEEE Software, Sept/Oct 2005</u>

Northrop, Linda. Ultra-Large-Scale Systems – The Software Challenge of the Future, Software Engineering Institute, June 2006

Rouse, William B. et al, *Understanding R&D Value Creation with Organizational Simulation*, Tennenbaum Institute, H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, Oct 2006

Wladawsky-Berger, Irving. "The Future of IT in an On-Demand World." IBM Server Group, Keynote address at OSBC 2005. Archived at http://www.itconversations.com/shows/detail495.html

-0008 GOES-7 IR 08 30 CCT 91303 120100 01297 09305 04.00

