

Click Here to upgrade to Unlimited Pages and Expanded Features

All Others Bring Data

CMMI[®] and Goal-Driven Measurement

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Charlene Gross and Wolf Goethert November 2007

Software Engineering Institute

Carnegie Mellon

© 2007 Carnegie Mellon University

Click Here to upgrade to Unlimited Pages and Expanded Features

In God We Trust, **All Others** Bring

Software Engineering Institute

Carn giel leurs

Unlimited Pages and Expanded Features Value of Measurement

The benefit and value of measurement comes from the decisions and actions taken in response to analysis of the data, not from the collection of the data.

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Review basic concepts of CMMI® and Goal-Driven Measurement

Provide examples of relationships between CMMI® and Goal-Driven Measurement

Describe application of measurement throughout CMMI®

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

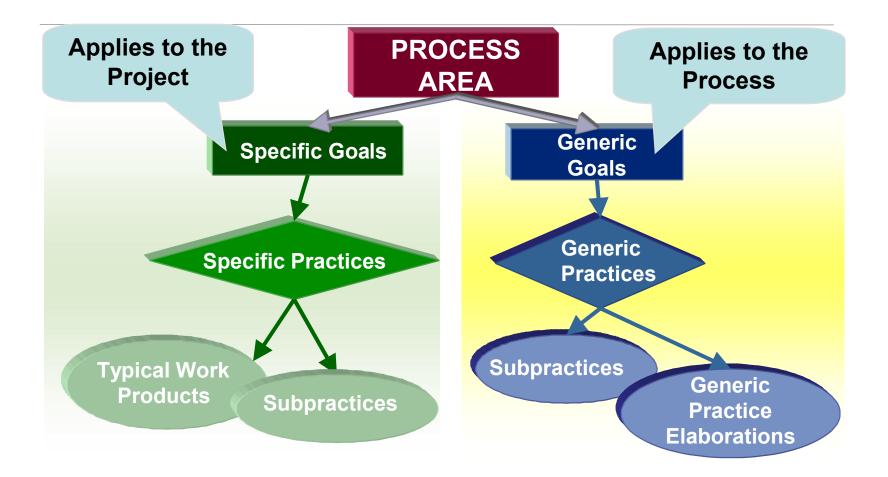
CMMI-DEV, Version 1.2

Non-prescriptive best practices

Infuse quality into products through the use of better processes

Focuses on improving processes from ad hoc, immature processes to disciplined, mature processes

> If you can't describe what you are doing as a process, you don't know what you're doing. ---W. Edwards Deming


Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

ts - CMMI[®] Model Components

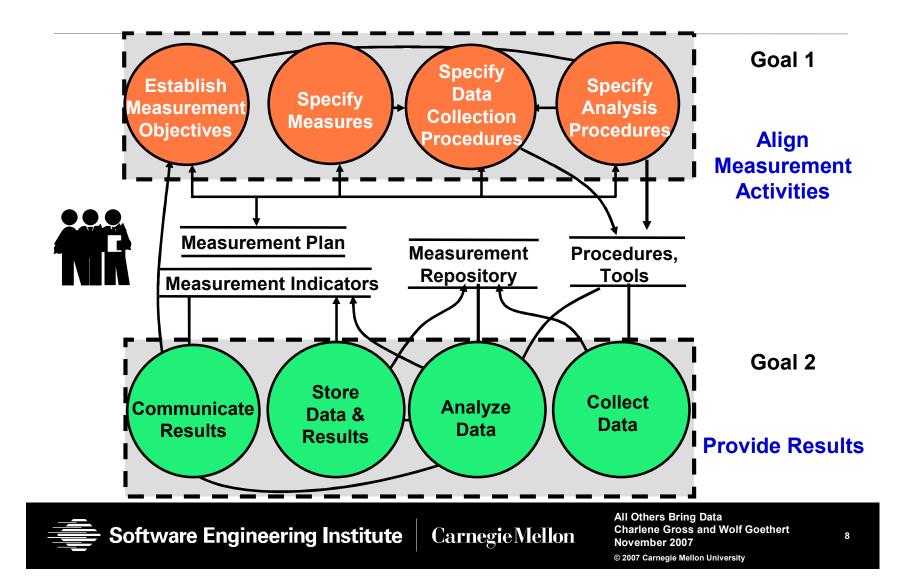
Specific Goals

SG 1: Align Measurement and Analysis Activities

É Measurement objectives and activities are aligned with identified information needs and objectives.

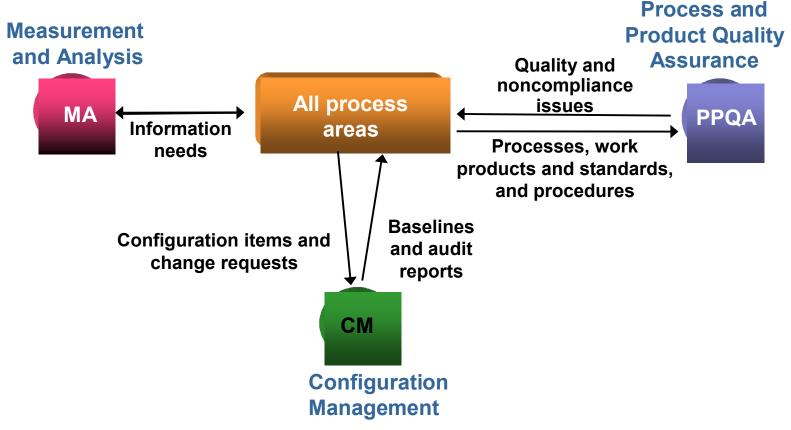
SG 2: Provide Measurement Results

É Measurement results that address identified information needs and objectives are provided.



Software Engineering Institute

Carnegie Mellon


All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Unlimited Pages and Expanded Features Practices

Other CMMI Process Areas

[CMMI-DEV Version 1.2, Relationships Among Process Areas p. 63]

Click Here to upgrade to Unlimited Pages and Expanded Features

Goal-Driven Measurement

Software Engineering Institute

Carnegie Mellon

© 2007 Carnegie Mellon University

Click Here to upgr Unlimited Pages a Your complimentary use period has ended. Thank you for using PDF Complete.

From Law of Blissful Ignorance

"What you don't know will always hurt you."

[Robbins and Finley, 1996]

Software Engineering Institute

Carnegie Mellon

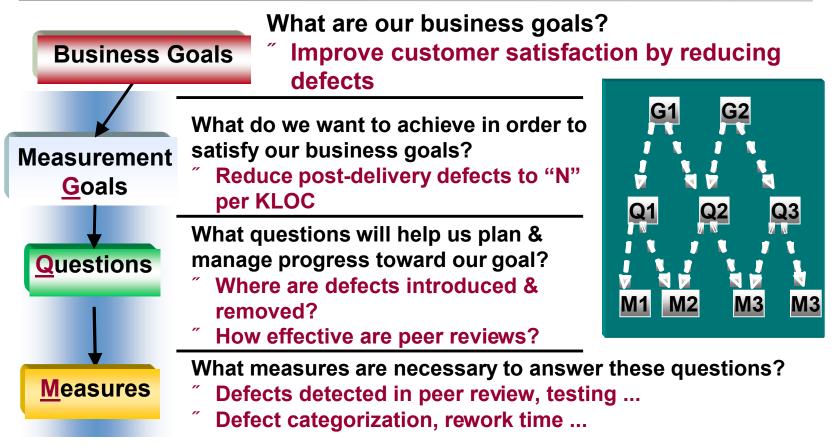
All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Measurement – Definition

Adaptable process to identify and define measures

Begins with identifying business goals and breaking them down into manageable subgoals

Ends with a plan for implementing welldefined measures and indicators that support the goals


Software Engineering Institute

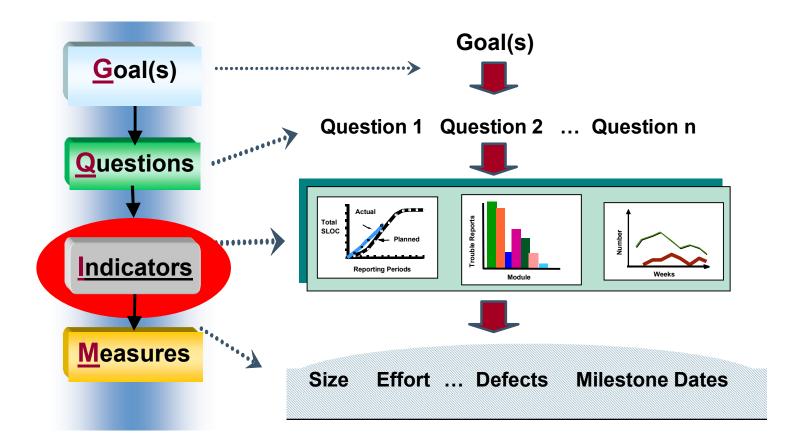
Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

oal-Question-Metric (GQM)

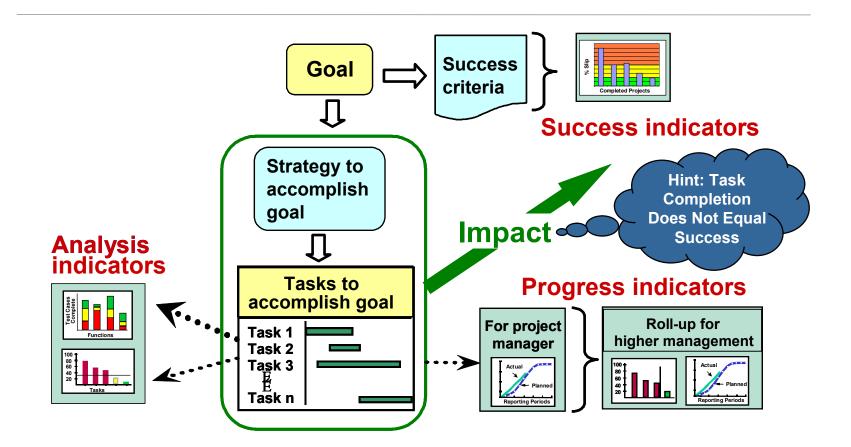
[Basili 88, Basili 89, Rombach 89]

Software Engineering Institute

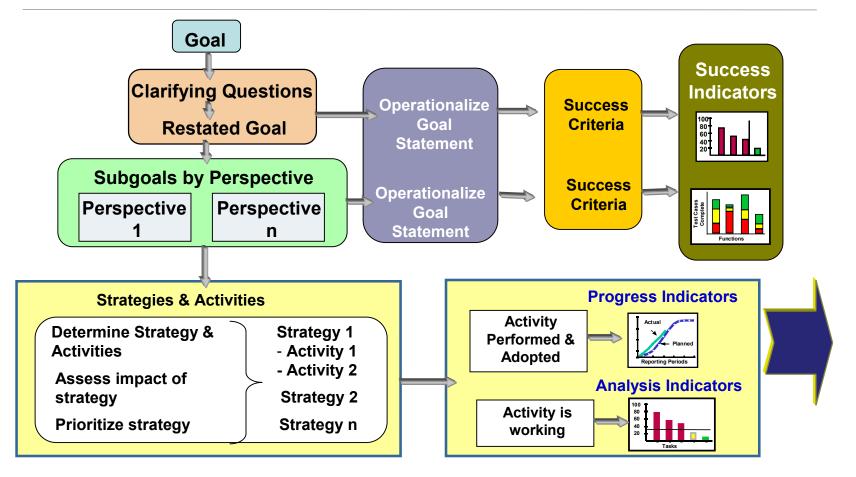

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 13 © 2007 Carnegie Mellon University

Unlimited Pages and


Measurement Process Model

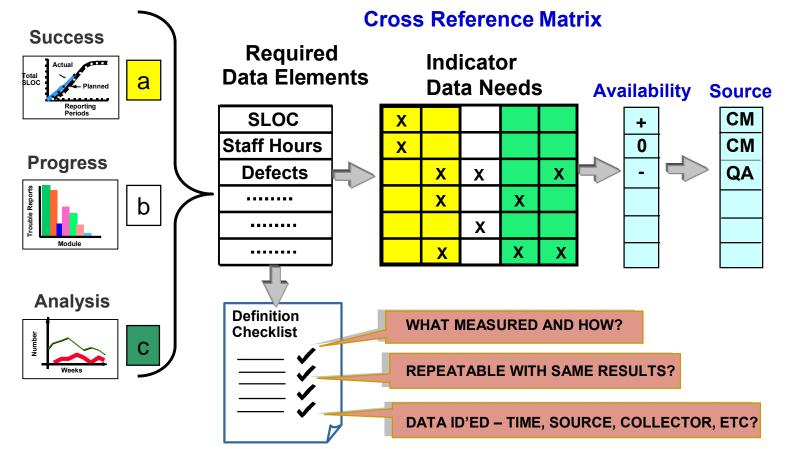
Unlimited Pages and Expanded Features


Click Here to upgrade to

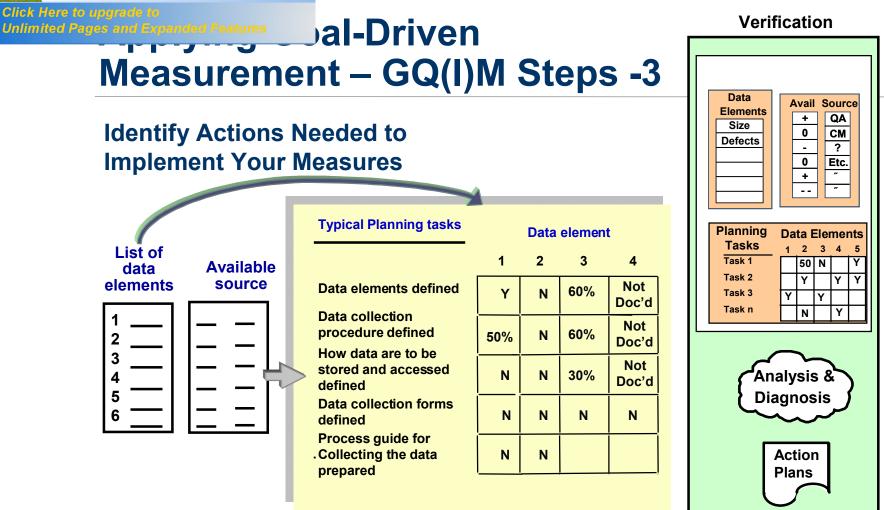
Unlimited Pages and

Your complimentary use period has ended. Thank you for using PDF Complete.

al-Driven Measurement –

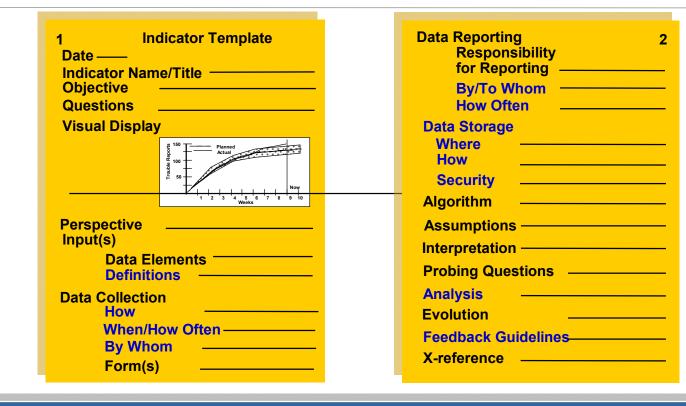

GQ(I)M Steps

Software Engineering Institute Carnegie Mellon All Others Bring Data November 2007
© 2007 Carnegie Mellon University



GQ(I)M Steps -2

So

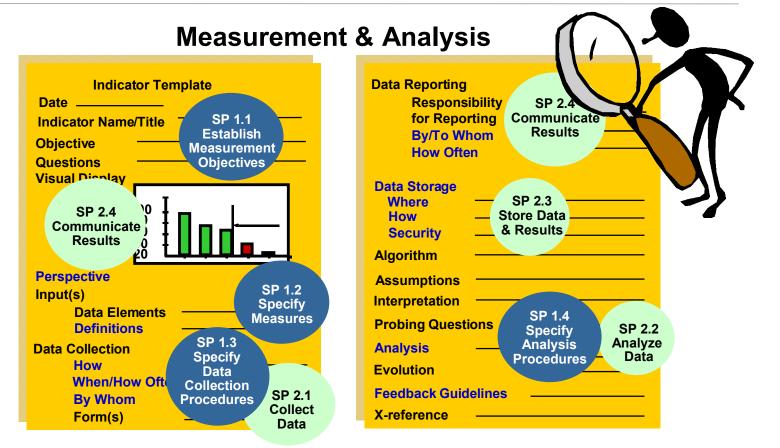

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

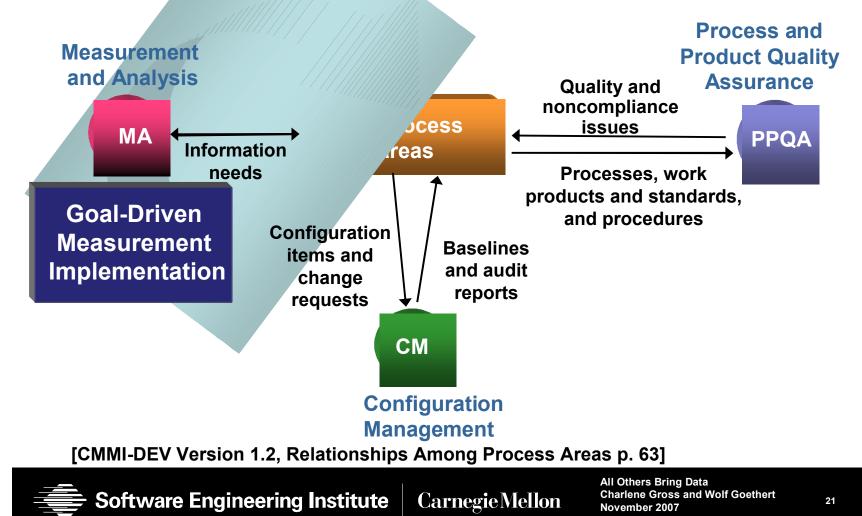
Unifinited Pages and Expanded Features ator Template

One accurate measurement is worth a thousand expert opinions. ---Admiral Grace Hopper


Software Engineering Institute

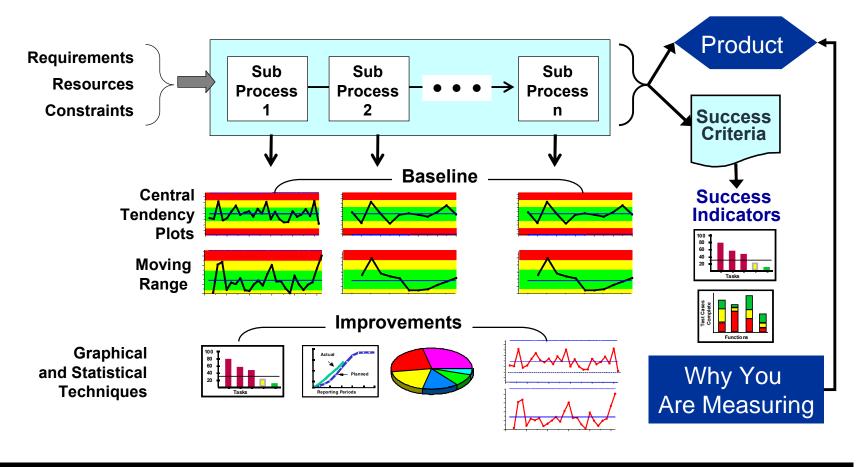
Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University



IMI Measurement and Analysis to Indicator Template

Supports All CMMI Process Areas


© 2007 Carnegie Mellon University

Click Here to upgrade

Your complimentary use period has ended. Thank you for using PDF Complete.

<u>CMMI – High Maturity Organizations</u>

Measurement Supports PAs At All Levels - 1

The following samples are drawn from the informative material of the PAs.

Color coding for PAs is by Maturity Level and solely for illustration of the broad application of Goal-Driven Measurement.

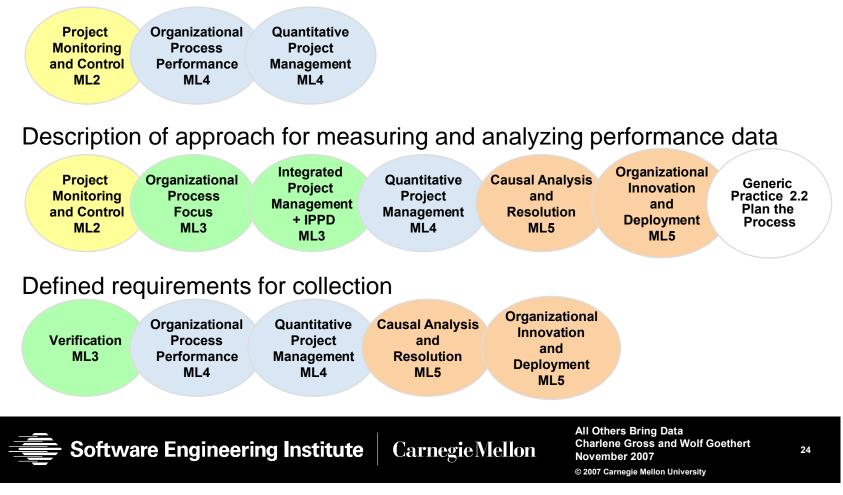
Yellow = Maturity Level 2 PAs

Green = Maturity Level 3 PAs

Blue = Maturity Level 4 PAs

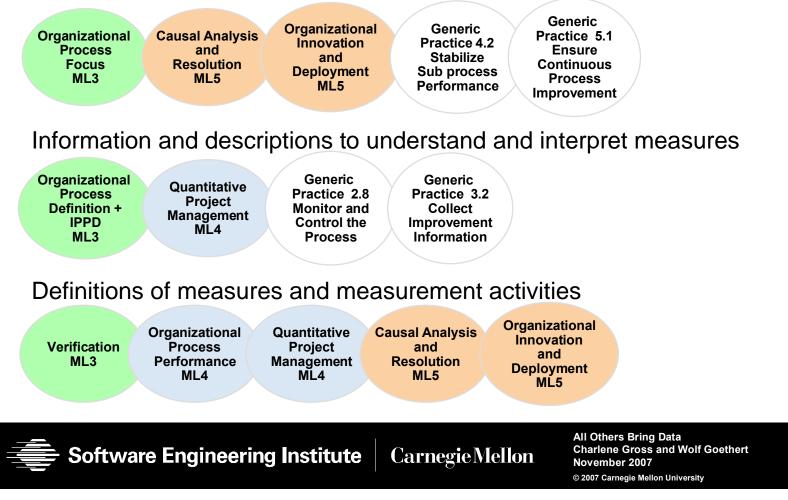
Orange = Maturity Level 5 PAs

White = Generic Practices


Backup slides provide more detail for each PA, as well as the complete name of the PA represented.

Measurement Supports PAs At All Levels - 2

Measurement assumptions, definitions, what counts, what doesnot



Click Here to upgrad

Your complimentary use period has ended. Thank you for using PDF Complete.

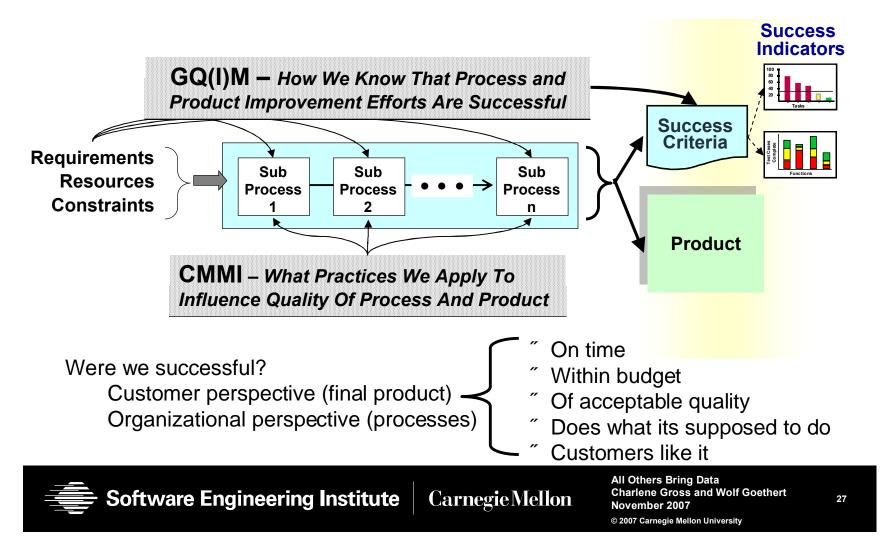
Measurement Supports PAs At All Levels -3

Documentation of organizational and measurement objectives

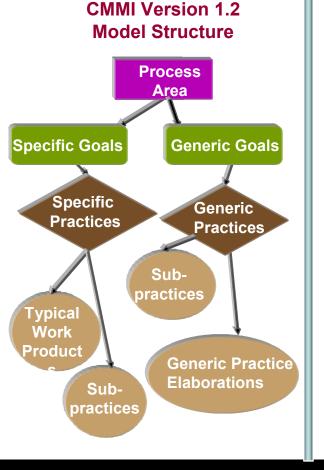
Click Here to upgrade to Unlimited Pages and Expanded Features

Software Engineering Institute Carne

Carnegie Mellon


© 2007 Carnegie Mellon University

Click Here to upa


Your complimentary use period has ended. Thank you for using PDF Complete.

Influenced By The Quality Of The Product Is Highly

Unlimited Pages and Expanded Features Unlimited Pages and Expanded Features Decore Connections pts Summary

Measurement and Analysis Process Area

- SG 1 Align Measurement and Analysis Activities
- SP 1.1 Establish Measurement Objectives
- SP 1.2 Specify Measures
- SP 1.3 Specify Data Collection and Storage Procedures
- SP 1.4 Specify Analysis Procedures
- SG 2 Provide Measurement Results
- SP 2.1 Collect Measurement Data
- SP 2.2 Analyze Measurement Data
- SP 2.3 Store Data and Results
- SP 2.4 Communicate Results

Goal-Driven Measurement Process Step 1: Identify you business

- Step 1: Identify you become by goals
 Step 2: Identify what you want to know or learn
 Step 3: Identify your subgoals
 Step 4: Identify the entities and attributes
 Step 5: Formalize your measurement goals
 Step 6: Identify your measurement questions & indicators
 Step 7: Identify the data elements
 Step 8: Define and document measures and indicators
 - Step 9: Identify the actions needed to implement your measures

28

Step 10: Prepare a plan

Charlene Gross and Wolf Goethert

Software Engineering Institute

Carnegie Mellon

© 2007 Carnegie Mellon University

All Others Bring Data

November 2007

itional Goal-Driven Unlimited Pages Measurement Information . . .

Organizational – Dave Zubrow, Director SEMA; Wolf Goethert, Bob Ferguson, Jeanine Siviy,

Selected Publications –

Goal-Driven Software Measurement--A Guidebook. Robert E. Park, Wolfhart B. Goethert, William A. Florac. CMU/SEI-96-HB-002. http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb002.96.pdf

(1) Applications of the Indicator Template for Measurement and Analysis. Wolfhart Goethert and Jeannine Siviy. CMU/SEI-2004-TN-024. http://www.sei.cmu.edu/pub/documents/04.reports/pdf/04tn024.pdf

D Experiences in Implementing Measurement Programs. Wolfhart Goethert and Will Hayes. CMU/SEI-2001-TN-026. http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tn026.pdf

Software Engineering Institute

Carnegie Mellon

All Others Bring Data **Charlene Gross and Wolf Goethert** November 2007 © 2007 Carnegie Mellon University

Click Here to upgrade to Unlimited Pages and Expanded Features

Software Engineering Institute

Carnegie Mellon

© 2007 Carnegie Mellon University

Click Here to upgrade to Unlimited Pages and Expanded Features

Backup Slides

Software Engineering Institute

Carnegie Mellon

© 2007 Carnegie Mellon University

Control

SP 1.1 Monitor Project Planning Parameters

Monitor the actual values of the project planning parameters against the project plan.

- GQ(I)M Process and Indicator Supports:
- É Recording associated contextual information (e.g. assumptions, definitions, what counts and what doesnd) to help understand the measures.

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Control -2

SP 1.6 Conduct Progress Reviews

Periodically review the project's progress, performance, and issues.

- GQ(I)M Process and Indicator Supports:
- É Description of approach for measuring and analyzing project performance data

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

SP 2.1 Prepare for Peer Reviews

Prepare for peer reviews of selected work products.

GQ(I)M Process and Indicator Supports:

 $\acute{\rm E}$ Record of defined requirements for collecting data during the peer review

SP 3.2 Analyze Verification Results

Analyze the results of all verification activities.

GQ(I)M Process and Indicator Supports:

É Documentation of technical performance parameters as part of measurement definition.

Software Engineering Institute Car

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Testures izational Process Focus

SP 1.1 Establish Organizational Process Needs

Establish and maintain the description of the process needs and objectives for the organization.

- GQ(I)M Process and Indicator Supports:
- É Documentation of measurement objectives established by tying organizational objectives to the picture of success and what we need to know

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

izational Process Focus -2

SP 3.4 Incorporate Process-Related Experiences into the Organizational Process Assets

Incorporate process-related work products, measures, and improvement information derived from planning and performing the process into the organizational process assets.

- GQ(I)M Process and Indicator Supports:
- É Documentation of how the organization's common set of measures will be analyzed

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Environization Process Definition

SP 1.4 Establish the Organization's Measurement Repository

Establish and maintain the organization's measurement repository.

GQ(I)M Process and Indicator Supports:

É Information and descriptions needed to understand and interpret the measures and assess them for reasonableness and applicability.

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Click Here to

Your complimentary use period has ended. Thank you for using PDF Complete.

Management + IPPD

SP 1.4 Integrate Plans

Integrate the project plan and the other plans that affect the project to describe the project's defined process.

GQ(I)M Process and Indicator Supports:

É Definitions of measures and measurement activities for managing the project

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Management + IPPD -2

SP 1.5 Manage the Project Using the Integrated Plans

Manage the project using the project plan, the other plans that affect the project, and the project's defined process.

GQ(I)M Process and Indicator Supports:

É Documentation of approach to obtaining and analyzing the selected measures to manage the project and support the organization a needs.

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Your complimentary use period has ended. Thank you for using PDF Complete.

Performance

SP 1.2 Establish Process-Performance Measures

Establish and maintain definitions of the measures that are to be included in the organization's process-performance analyses.

GQ(I)M Process and Indicator Supports:

É Selection of measures and definitions for appropriate insight into the organization of quality and process performance

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Unlimited Pag

Your complimentary use period has ended. Thank you for using PDF Complete.

Performance -2

SP 1.4 Establish Process-Performance Baselines

Establish and maintain the organization's processperformance baselines.

- GQ(I)M Process and Indicator Supports:
- $\acute{\mathrm{E}}$ Documentation of collection information for measures

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

titative Project Management

SP 2.1 Select Measures and Analytic Techniques

Select the measures and analytic techniques to be used in statistically managing the selected sub-processes

GQ(I)M Process and Indicator Supports:

É Development of definitions of the measures and analytic techniques to be used in (or proposed for) statistically managing the sub-processes; operational definitions of the measures, their collection points in the sub-processes, and how the integrity of the measures will be determined

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Analysis And Resolution

SP 1.1 Select Defect Data for Analysis

Select the defects and other problems for analysis.

GQ(I)M Process and Indicator Supports:

É Documentation of objectives established for measurement and analysis, specifying the measures and analyses to be performed, obtaining and analyzing measures, and reporting results

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Your complimentary use period has ended. Thank you for using PDF Complete.

Deployment

SP 2.1 Plan the Deployment

Establish and maintain the plans for deploying the selected process and technology improvements.

GQ(I)M Process and Indicator Supports:

É Establishment of measures and objectives for determining the value of each process and technology improvement with respect to the organization of quality and process-performance objectives

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

Unlimited Pa

Your complimentary use period has ended. Thank you for using PDF Complete.

Deployment -2

SP 2.3 Measure Improvement Effects Measure the effects of the deployed process and technology improvements.

- GQ(I)M Process and Indicator Supports:
- É Establishing objectives for measurement and analysis, specifying the measures and analyses to be performed, obtaining and analyzing measures, and reporting results.

Software Engineering Institute

CarnegieMellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

GP 2.2 Plan the Process

Establish and maintain the plan for performing the process.

GQ(I)M Process and Indicator Supports:

É Identification and documentation of measurement requirements to be included in the plan for performing the process

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

GP 2.8 Monitor and Control the Process

Monitor and control the process against the plan for performing the process and take appropriate corrective action.

- GQ(I)M Process and Indicator Supports:
- É Documentation of established measures for monitoring actual performance of the process.

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

GP 3.2 Collect Improvement Information

Collect work products, measures, measurement results, and improvement information derived from planning and performing the process to support the future use and improvement of the organization's processes and process assets.

GQ(I)M Process and Indicator Supports:

É Selection of appropriate measures to support future use and improvement of processes and process assets

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

GP 4.2 Stabilize sub-process Performance

Stabilize the performance of one or more sub-processes to determine the ability of the process to achieve the established quantitative quality and process-performance objectives.

GQ(I)M Process and Indicator Supports:

É Selection of process and product measures to be incorporated into the organization a measurement repository to support process-performance analysis and future fact-based decision making

Software Engineering Institute

Carnegie Mellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University

GP 5.1 Ensure Continuous Process Improvement

Ensure continuous improvement of the process in fulfilling the relevant business objectives of the organization.

GQ(I)M Process and Indicator Supports:

 $\acute{\rm E}$ Identification of process improvements that would result in measurable improvements to process performance.

Software Engineering Institute

CarnegieMellon

All Others Bring Data Charlene Gross and Wolf Goethert November 2007 © 2007 Carnegie Mellon University