

Challenges: The Stage

Urban

Caves

Riverine

Jungles/Canopy

Challenges: The Environment

Urban / Cave Warfare Requires Sensors for Detecting the Enemy

Riverine – Limited Access Environment

Excessive Heat, Humidity, and Dust in the Environment

Non Line of Sight in Urban Environments

Jungle Canopy –
degraded
mobility, aerial
surveillance,
and
communications

Emerging Solutions

Persistent ISR to OIF

Microsystems

Family of UGS

Persistent Threat
Detection System to OIF

Wearable Sensors

A Look into the Future - Basic Research... The Next Generation of Disruptive **Technologies**

Decade of the 1970's

Structural Imaging Artificial Intelligence

1971 - First Practical X-ray Computed Tomography Image

1970-Shakey the robot Supercomputing

1971 – First 4 Bit Microprocessor in Production

1975 - Cray I Supercomputer

Arcade **Games**

Today for 2020 and beyond...

Functional Brain Imaging

Robotics

Nanotechnology

Immersive **Environments**

Quantum Computing

Biotechnology

Nanoelectronics: Devices & Sensors

GOAL: Multifunctional 3-D nanodevice architectures for electronic textiles and networked microsystems for remote sensing applications

OBJECTIVE: Fundamental research on integrated nanoelectronic devices

ARL's *in-house* nanoelectronics basic research capability:

- Discrete nanodevice fabrication:
 - Thermal CVD SW-CNT growth
 - Directed nanoscale assembly
 - Nanoscale manipulation
 - 3-D nanoscale architectures
 - Microfluidic channels
- Nanoelectronic device testing:
 - Micro- to nanoscale probing
 - DC to 110 GHz
 - 4.5-475 K
 - fA sensitivity
 - Controlled ambient environments

Research focus:

- Amperometric sensors
- Ultra-high frequency (GHz-THz) communications & sensor devices
- Nanoscale thermal management
- Ensemble effects in nanoelectronic devices

Biomimetics

Biologically directed assembly of flexible batteries:

 Use genetically modified viruses to control assembly of cobalt oxide anode

- Polymer electrolyte
- Standard cathodes (metal rod or sheet shown)

Higher Capacity, Faster Reaction Rates

Virus fibers for use in multifunctional textiles:

- Virus-assembled barcodes
- Electro-spun virus fibers for sensor & electronics applications

Prof. Angie Belcher, MIT
Dr. Charlene Mello, NSRDEC
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED, 2

MEMS for Power & Energy

Chem-Bio Detection and Defense

SCIENCE Amplifying Fluorescing Polymer (AFP) developed by MIT ISN Prof. Swager glows green, but quenches when TNT is present.

MEMS Photo Acoustic Sensor

Science Making a Difference for Soldiers: FIDO Explosives Detector

DETECTION OPPORTUNITY

Hidden explosives give off traces of chemicals, which may be detected.

FIDO Units in Iraq for Evaluation (2005) – Integrated on robot and handheld

Integration of Chemical /
Biological
Sensing with Electronics.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED,

Approved For Public Release

Networked Fusion & Understanding

Characteristics:

- Scalable
- Expandable
- Adaptive
- Modular

Challenges:

- Network Architecture
- Robust Fusion Engines

- Autonomous Management
- Up-to-date

Data Flow Architecture

Centralized

Distributed

Decentralized

Shaping the Vision: Operational Scenarios

Autonomous networked ensembles of multifunctional microsystems for enhanced battlefield situational awareness for the Soldier

Scenario #1: small unit building search

Autonomous navigation in benign indoor environment with human mission control

Scenario #2: small unit cave search or demolished building

Autonomous navigation in complex environment with human mission control

Scenario #3: small unit perimeter defense

Autonomous navigation in complex environment with autonomous mission control

