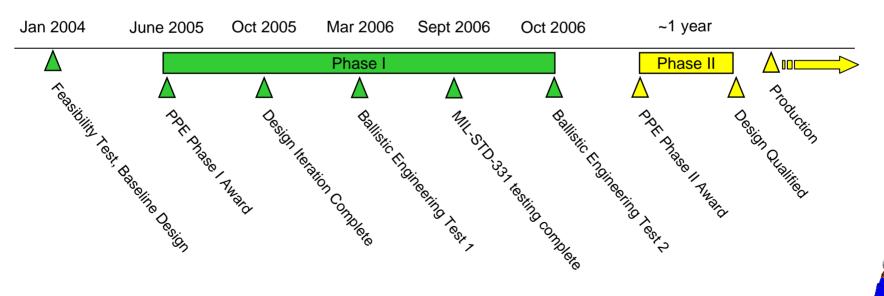


An advanced weapon and space systems company

XM242 Pyrotechnic Self Destruct Fuze (p-SDF) For 155mm M864E2 Recap

Mike Hiebel Director, Fuze and Warhead Development ATK Advanced Weapons May 2007


Overview

XM242 Pyrotechnic Self-Destruct Fuze (p-SDF)

- Based on fielded IMI fuze for M85 grenades
- Developed to meet <1% Unexploded Ordnance (UXO) for M42/M46 grenades
 - Costs to clear UXO from combat areas is extremely high
 - UXO is both a combat and a humanitarian issue
 - DoD Policy is to reduce UXO to less than 1%

Time Line of XM242 Development

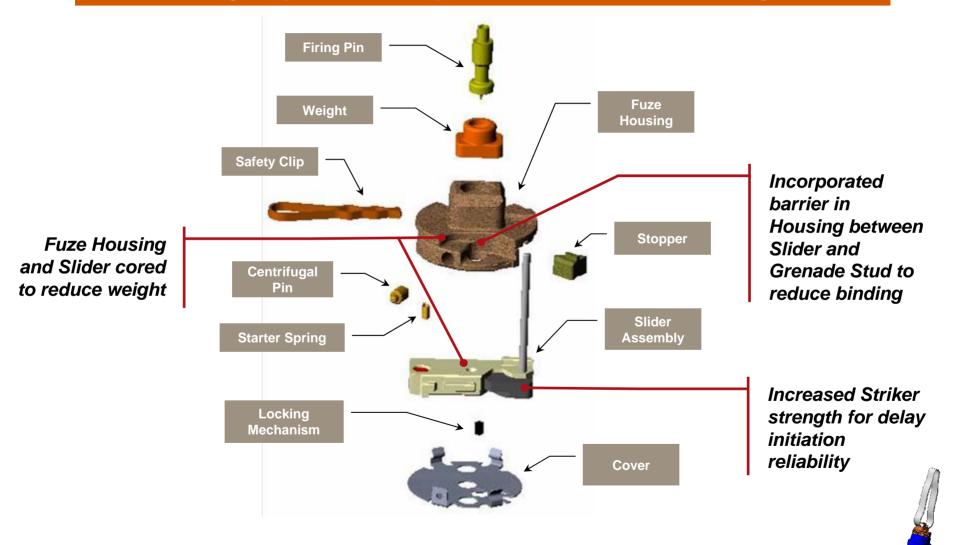
Baseline for XM242 tested in January 2004

M864 Fuze Results

Mode	Range	Charge	Fired	Funct'd	% Funct'd	UXO	% UXO	Haz Dud	% Haz Dud
Primary	24km	5-H	60	56	93.33%	4	6.67%	N/A	N/A
SD	24km	5-H	240	240	100.00%	3	1.25%	0	0.00%
Tactical	24km	5-H	132	130	98.48%	2	1.52%	0	0.00%
Total			432	426		9	2.08%	0	0.00%

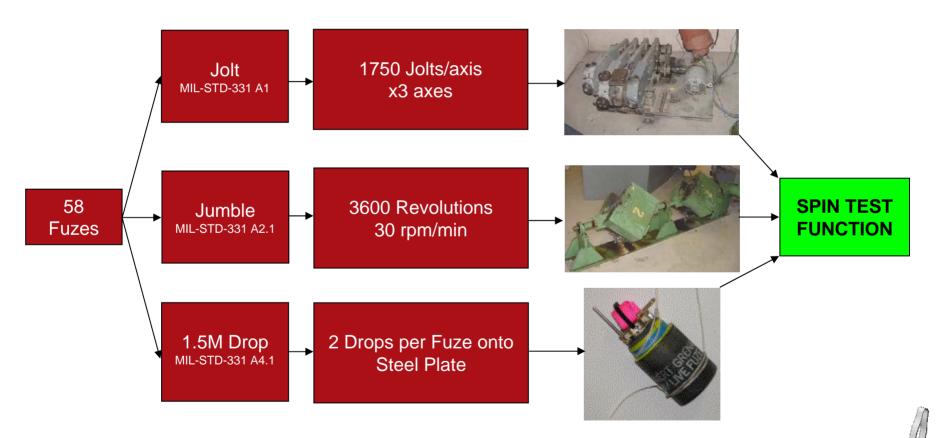
UXO = Live HE in grenade or fuze

Haz Dud = Live HE in grenade and Live primary energetics in fuze

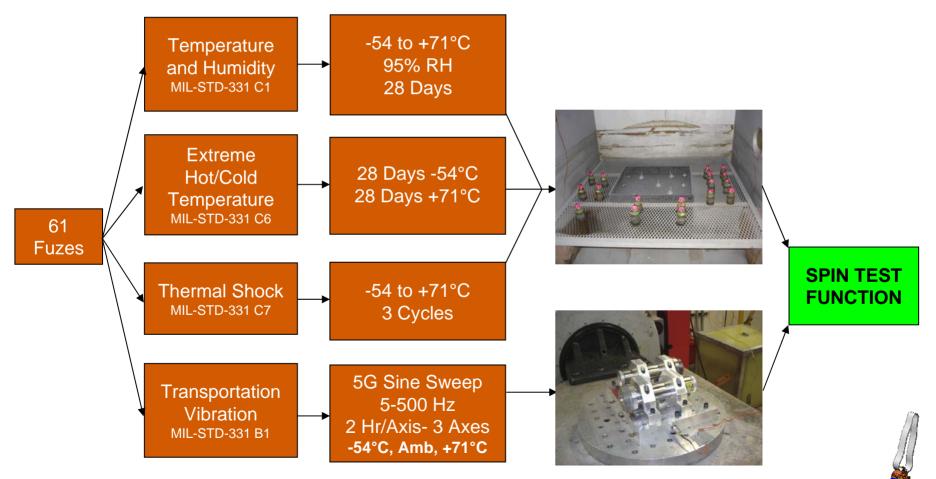

From ATK Self Destruct Fuze Presentation to NDIA 48Th Annual Fuze Conference

XM242 Baseline Design Modifications

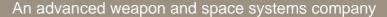
An advanced weapon and space systems company


Design Improvements Implemented on the Baseline Design

Safety Critical Environments



 Completed Testing to Specified Safety Critical MIL-STD-331C Environments



 Completed Testing to Specified Life Cycle Environments

Ballistic Engineering Test 1 - Configurations

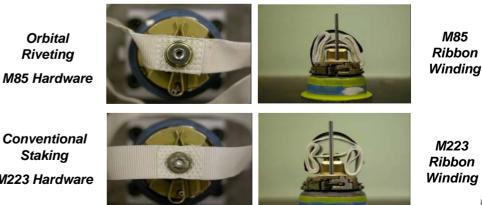
Several Designs Analyzed through DOE's

	Configuration Number		Slider Length		Unarmed Neutralization Feature		
<u>n</u>		Baseline	Smaller	Baseline	Shorter	Stopper	Stopper combined with Housing
	6-1	х		х		х	
	6-1-1		х	x		х	
	6-2		х		х	х	
	6-3	х			х	x	
	6-5	x			х		x

Fuze Design

Fuze/Grenade Attachment

Conventional Staking



Orbital Riveting

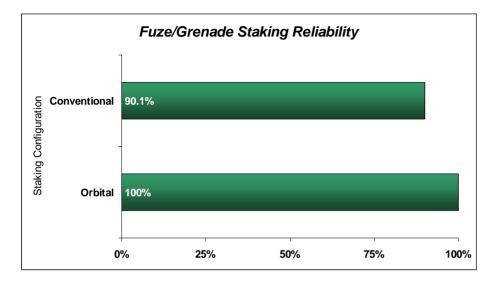
Orbital Riveting

Conventional Staking M223 Hardware

Ribbon Configuration

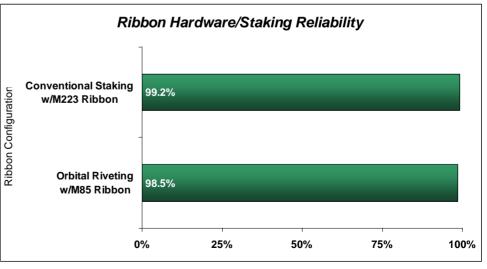
Ballistic Engineering Test 1 - Firing Conditions

An advanced weapon and space systems company


BET 1 Firing Conditions

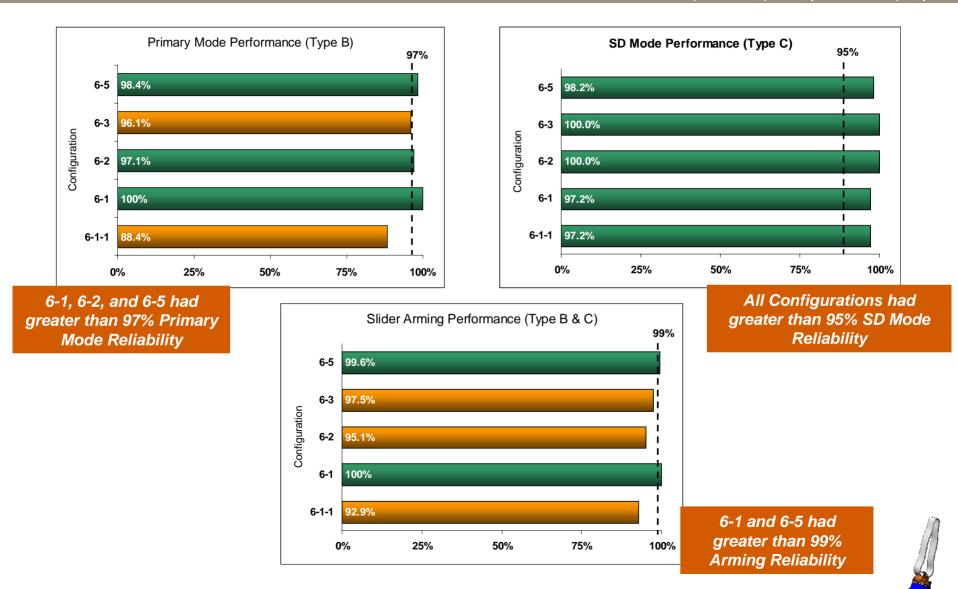
Test	Rounds	Fuzes	Charge	Temp (ºF)	QE (mils)
Strength of Design	5	360	M203+	+145	450
	2	144	M203	+145	1185
	2	144	M203	-50	1115
Modified Baseline	6	432	M203	+145	1190
	3	216	M203	+145	475
	4	288	M203	-50	1145
Totals	22	1584			

Ballistic Engineering Test 1 - Results



An advanced weapon and space systems company

Down-selected Fuze/Grenade Staking Configuration: Orbital


Down-selected Ribbon Configuration: Conventional Staking with M223 Ribbon

Ballistic Engineering Test 1 - Results

An advanced weapon and space systems company

Ballistic Engineering Test 1 - DOE Analysis

An advanced weapon and space systems company

Housing Diameter and Slider Length DOE

Configuration	Housing Diameter	Slider Length	
6-1-1	Smaller (-1)	Standard (1)	
6-1	Standard (1)	Standard (1)	
6-2	Smaller (-1)	Shorter (-1)	
6-3	Standard (1)	Shorter (-1)	

Configuration 6-3 performed statistically better than all other configurations.

Unarmed Neutralization Feature (Stopper) DOE

Configuration	Stopper Integrated into Housing	
6-3	No (-1)	
6-5	Yes (1)	

Configurations 6-3 and 6-5 not statistically different.

Down-selected Fuze Configurations: 6-3 and 6-5

Ballistic Engineering Test 2 - Configurations

An advanced weapon and space systems company

The design was further optimized through conducting a DOE in BET 2:

	Slider Lockin	Slider Locking Mechanism Unarmed Neutralization Fea		
Configuration Number				
	Single Lock	Dual Lock	Stopper	Stopper combined with Housing
6-3	х		х	
6-3-2		x	x	
6-5	х			x
6-5-2		х		x

<u>Fuze</u> Design

Fuze/Grenade Attachment

Orbital Riveting

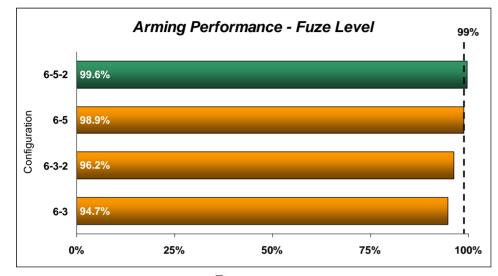
Conventional Staking M223 Hardware

Ribbon Configuration

M223 Ribbon Winding

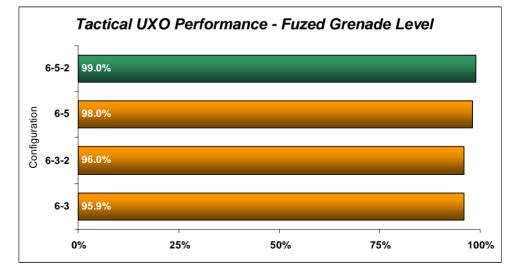
Ballistic Engineering Test 2 - Firing Conditions

An advanced weapon and space systems company


BET 2 Firing Conditions

Test	Rounds	Fuzes	Temp (ºF)	QE (mils)
Strength of Design	2	144	+145	440
Worn Tube	2	144	+145	460
Tactical Vibration	2	144	+145	445
	1	72	+145	1205
	2	144	+145	505
	2	144	-50	520
	1	72	-50	1140
	2	144	-50	595
Modified Baseline	4	288	+145	450
	1	72	+145	1205
	2	144	+145	505
	3	216	-50	520
	1	72	-50	1140
	1	72	-50	595
Totals	26	1872		

Ballistic Engineering Test 2 - Results



An advanced weapon and space systems company

Configuration 6-5-2 meets the 1% UXO Requirement!

Phase I of the PPE effort:

- Proved recap process is feasible
- Verified fuze can survive stringent ballistic tests
- Performed MIL-STD-331 environmental testing
- Completed program on an accelerated schedule
- Performed maximum ballistic testing with minimum hardware via DOE's
- Down-selected a design that meets the 1% UXO Requirement

Phase II Proposal submitted for Qualification of the M864E2 with the XM242 fuze

Proposal is in the evaluation process

Phase II tasks:

- Perform MIL-STD-331 tests on down-selected design from BET 2
- Perform Environmental and Ballistic tests on 220 rounds, live grenades

XM242 Summary

Effective Government / Industry IPT

• U.S. Army

Israel Military Industries

Alliant Techsystems

• Day & Zimmerman

The IPT looks forward to Qualifying the design, which provides a solution to the UXO issue for the U.S. Army

The ATK / IMI XM242 fuze design meets the UXO requirement, <1% UXO

An advanced weapon and space systems company

End of Presentation

