Constant current testing of a SemiConducting Bridge initiator

W.C. Prinse, R.H.B. Bouma, T.T. Griffiths, M.P. Wasko

TNO | Knowledge for business

Richard H.B. Bouma

Introduction

- SemiConducting Bridge initiator
 - A promising new type of initiator
 - Relatively insensitive to Personnel Electrostatic Discharge and Electromagnetic Interference
 - Fast acting device
 - Mass production feasible
- Destructive and constant current characterisation of bare SCBs

Destructive and constant current characterisation

- Three different set-ups used to impose a constant current
 - BNC 555 pulser, 1.5-10 A, 0.10 ms pulse
 - Dynasen piezo-resistive pulse power supply, 24.0-25.0 A, 0.10 ms pulse
 - Capacitor discharge, 1 $\mu\text{F},$ SCB in series with large $\Omega,$ 8.5 -100 A
- Detection of functioning with photodiode
- Evaluation of firing bare SCB using
 - Voltage V
 - Current I
 - Resistance R, specific resistivity $\boldsymbol{\sigma}$
 - Energy E = ∫V·Idt
 - Material constant ∫I²dt / (W·D)², characteristic for Ohmic heating until explosion
 - With W width and D thickness of SCB bridge

Generic behaviour of SCB Resistance vs deposited electric energy

• Characterization and Electrical Modeling of Semiconductor Bridges, K.D. Marx et al., Sandia report

SCB firing at 7.0 A - 100 µs pulse Voltage and current profile

- Registration of light is necessary to detect bridge explosion
- Two maxima in resistance before explosion (one maximum expected)

SCB firing at 7.0 A - 100 µs pulse Specific resistance and action integral

- Specific resistance evaluated directly from voltage, current and bridge dimensions
- JI²dt / (W·D)² at moment of bridge explosion is a complex function of temperature dependent density, specific heat and specific resistance, and enthalpies associated with phase changes

SCB firing at 7.0 A - 100 µs pulse Resistance versus deposited electric energy

time / seconds

SCB firing at 25 A - 100 µs pulse (Specific) resistance

SCB firing at 100 A – capacitor discharge Voltage and current profile

- Oscillations/ringing on current and voltage signal
- Functioning after 1.0 μs

SCB 1-11

SCB firing at 100 A – capacitor discharge (Specific) resistance

Summary of destructive tests

SCB	I A	Pulse µs	Firing µs	∫l²dt/(WD)² 10 ¹⁵ A²s/m⁴	E 10 ⁻³ J	σ* 10 ⁻⁶ Ωm
1-4	4.6	100	100	3.5	3.2	11
1-2	5.5	100	100	5.0	3.2	5.5
1-5	7.0	100	35	2.6	2.0	5.5
1-12	8.5	Discharge	32	3.4	2.2	5.0
1-13	8.5	Discharge	49	5.5	2.8	5.0
1-6	10.0	100	35	5.3	2.5	4.0
1-14	15	Discharge	15	5.9	2.2	3.0
1-8	24	100	16	17.7	3.0	2.0
1-9	25	100	17	20.7	3.1	1.2
1-10	52	Discharge	3.7	15.9	2.6	2.0
1-11	100	Discharge	1.0	13.0	2.5	1.5

* Specific resistance level after first maximum, melt region

12 Constant current testing of an SCB initiator

- Short duration pulse of increasing strength applied to a single SCB, indicates reversible behaviour up to the moment of bridge fusion
- NB: the No-Fire current has not been determined here, even though 1.5 A 100
 µs pulse hardly shows a resistance increase
- 13 Constant current testing of an SCB initiator

PESD assessment

- Personnel ElectroStatic Discharge threat (STANAG 4239)
 - ±25 kV, ±20 kV, ±15 kV, ±10 kV, ±5 kV discharge from 500 pF capacitor
 - 500, 5000 Ω resistance in series with munition
- Available energy 156 mJ, RC-time 0.25, 2.5 μs
- Resistance SCB is not constant, R \leq 1 Ω with peaks up to \approx 3 Ω
- The maximum electrostatic discharge threat of personnel, simulated by a 500 pF capacitor at 25 kV and discharged through 500 Ω in series with a "1 Ω" SCB, will deposit 0.3 mJ
- Deposited energy 0.3 mJ < 2.2-3.2 mJ measured firing energy
- SCB passing PESD seems promising, only needs experimental verification

Discussion and conclusions

- SemiConducting Bridge initiators are a promising new type of initiator; their electric behaviour however is complex
- Depending on current level a number of maxima in resistance are observed
 - I > 10 A typically 2, I < 15 A, typically 3 maxima
 - Commonly described behaviour: solid→liquid→plasma
 - Transition of liquid to vapour? Reaction of air with Si? ...
- Action integral seems to increase and specific resistance of melt to decrease with increasing power of electric pulse. This is still unexplained.

Discussion and conclusions

- Energy to bridge fusion no function of pulse shape (2.2-3.2 mJ)
- Experimental results are promising regarding No-Fire current and robustness against PESD threat, experimental verification needed
 - Estimated PESD 0.3 mJ energy even before phase transition

Experimental work with loaded SCBs is under way

Acknowledgement

 This work was carried out as part of the Weapon and Platform Effectors Domain of the MoD Research Programme under an Anglo-Netherlands-Norwegian Collaboration (ANNC).

 This work was carried out as part of the MoD Programme Munitions and Explosive Substances under an Anglo-Netherlands-Norwegian Collaboration (ANNC).

Defence Materiel Organisation

