One & Two Dimensional Diagnostics for Detonators & Boosters

S.A. Clarke, K.A. Thomas, C.D. Landon, & T.A. Mason

Weapons Engineering Los Alamos National Lab

NDIA Fuze Conference May 2007

Diagnostics are needed to understand detonation transfer & HE system design

- Every fuze system uses a series of successively larger explosive charges
- This HE transfer problem drives sizing of future munitions, i.e. miniature firing systems are are limited by the size of the explosive train
- Insensitive Munitions requirements only make matters worse

What we know about IHE's

- Difficult to reliably detonate with small initiation systems
- Can experience significant transient effects (accelerating, or decelerating detonation waves & poor corner turning properties
- Area LANL has dubbed "microdetonics"
- HE modeling of transient effects using Detonation Shock Dynamics (DSD)
- Require a better understanding of the transient phenomena to feed HE transfer designs & HE formulations

Key to understanding is diagnostics

- Small-Scale Statistically Significant Experiments
 - Phased study of Explosive Train
 - Mini-Wedge Tests for IHEs
- 1-D Experiments & Diagnostic Techniques
 - Comparision to database
 - Photonic Doppler Velocimetry
 - Cutback experiments
- Multi-dimensional Diagnostics
 - Laser Schlieren High Speed Movies
 - Photonic Doppler Velocimetry
 - Streaks, Breakout, and COI
 - Future Diagnostics

Photonic Doppler Velocimetry (PDV)

- laser-based radar gun
- will replace VISAR as diagnostic
- uses IR light (1550nm)
- all fiber optic system (no alignments)

- determines velocity from Doppler shift of reflected light
- similar to VISAR
- directly measures the heterodyne beat electronically
- velocity range from m/s to km/s

LANL's mini-PDV system

Courtesy of David Holtkamp

Slide 4

PDV Example: Laser ablated metal

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

PDV Application Examples

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Apparent Center of Initiation as a Metric

- Explosive breakout observed by streak camera
- Image fit to a curve
- Assume a Huygens-like propagation (not bad idea for detonator HE)
- Work equations backwards to determine apparent "point" of initiation
- Provides a distance from surface
- Quantitative measure of waveshape
- May or may not be related to actual COI

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Quantitative Measurements Of Wave Shapes Offers A Gauge Of Similarity

Output WaveShapes are very similar

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

*Time/Distance Scales are not equivalent Slide 8

Fits to the Apparent Center of Initiation provide Metric of Equivalency

EBW Detonator

WorkHorse Detonator

Average Center of Initiation	
SE-1 (EBW)	WorkHorse (Laser)
8.10 mm	8.58 mm

Need for Multi-Dimensional Data

- It is not enough to determine the pressure drive in 1-D
- Next stage explosive sees all of the input
- Requires 2-D flow characterization
- LANL attempted different techniques to characterize the true flow fields

Laser Schlieren Experimental Setup

ER-462 into Air

- No witness material
- Hard Fire of ER-462
- 20 ns exposures
- 200 ns interframe
- 3.61 km/s shock velocity

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATIONAL LABORATORY

ER-462 (DOI) into PDMS

- PDMS is soft plastic witness
 material
- Hard Fire of ER-462
- 20 ns exposures
- 200 ns interframe
- 2.21 km/s shock velocity

Schlieren System has Wide Applicability

Large field of view (~ 30 mm)

Long interframe time (~ 15 us)

Large field of

time ($\sim 50 \text{ ns}$)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Use EPIC to infer the pressure output from detonator creating the shock profile

- Use EPIC to find 'likely' boundary condition on experiment
- Working the problem in reverse
- Verify detonation model parameters for detonator explosives (PETN, HNS-IV, ...)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Use EPIC to find Temporal-Spatial Pressure Profile

- Use EPIC to find 'likely' boundary condition on experiment
- This allows us to infer the pressure output profile for tested detonators
- Verify detonation model parameters for detonator explosives (PETN, HNS-IV)

PIV Measurements Show 2-D HE Flows

GOAL – quantify 2-D flow

- Particle Imaging Velocimetry
- Embedded particles
- Current testing at ASU on EBWs & EFIs

Filter 8-bit CCD Nd-YAG stack Camera ase **PDMS Sample** EBW with inner layer seeded with Holding High-High-Laser sheet particles plate energy energy optics Mirror #2 Mirror #1 Alamos NATIONAL LABORATORY

EST. 1943

- LANL working to develop diagnostics for 1-D and 2-D flow of energy from various stages of detonator-booster explosives
- Presented several techniques
- Attempting to make Schlieren & PIV techniques feed hydrocode data (not just pretty pictures)
- Better understanding is the key to working the existing IHE transient detonation problems

