

Multi-Option Fuze for Navy (Mk 437 MOFN)

51st NDIA Fuze Conference May 22-24, 2007

Mr. Brian Will

Naval Surface Warfare Center, Dahlgren Division, Fuze Branch - Code G34 brian.will@navy.mil

(540) 653-5481 DSN: 249-5481

Fuze Navalization

"Navalize" the Army M782 Multi-Option Fuze for Artillery (MOFA) for use with the US Navy 5" Gun Weapon System

Provide a moderately priced Multi-Mode of Operation Fuze for Naval Surface Fire Support & Surface Warfare Missions

Army

Navalization Approach

Retain MOFA Functional Modes: Mk 437 MOFN = M782 MOFA

Electronic Time (ET)

Point Detonating (PD)

Navalization Considerations

DAHLGREN

Gun weapon system & mission changes

- ♦ PIAFS* \Rightarrow MK 34 Fuze Setter
- ◆EMV: More Radiation to Deal with
- Safety & Qual Requirements different
- Different mission: close-in speed boats

*PIAFS = Portable Inductive Artillery Fuze Setter

Overview of Changes

Summary of Engineering Changes (none went as planned)

Changes To Inductive Interface Hardware
 Unexpected Electronics EMV Hardening
 Changes To Fuze Software

 (Unexpected Complete Software re-write)

 Unexpected Improvement to fuze seals

Changes To Safe & Arm Device Explored (Unmodified S&A determined to be sufficient after much mechanical design, test & safety analyses)

Required Engineering

Inductive Interface Changes

Initial Engineering Design Approach up to PDR:

 Bobbin made of Magnetic Material
 - twice the number of windings
 smaller gauge
 Magnetic Material could not be manufactured

Final Engineering Design Approach:

Same bobbin as MOFA
Same # coil windings
Added Magnetic Core

Required Engineering

Inductive Interface Changes (cont.) Final Engineering Design Approach: >Minor Changes to Electronics: Changed inductive tuning components New Flex Card Layout Changes to Pin assignments Different Voltage Detector

Software Development

- Complete re-write of MOFA software
- Object Oriented Design
- > 95% High-level language (5% assembly code)
- Development based on IEEE/EIA 12207.1 &.2
- Hardware in the loop prototype & Qualification testing (G34 & EDC)
- Performed Independent Software Safety Analysis (EG&G)

Required Engineering

Required Engineering

S&A changes explored

- Reliability issues with extended arming distance
- Safe Separation Analysis indicates that unmodified MOFA S&A will satisfy safety requirement

MOFN S&A Modification abandoned

 Unmodified MOFA S&A will be used on MOFN

Use Unmodified MOFA S&A

> PDR (Nov 2004) Lot A Test (20 Gunfired – Jan 2006) Lot B Test (349 fuzes – July 2006) Lot C Test (50 fuzes – Aug 2007) Award LRIP (Oct 2007) > At-Sea Shipboard test (June 2008)

>Test Results

- ET met specification
- HOB over water did not meet specification
 8/15 functioned below the minimum HOB
 Bi-modal HOB ~5' & ~40'
- Gross Leak Testing results did not meet specification

Investigated failures, made fixes, built Lot B

MOFN Lot A Results

Bi-modal HOB over water Heights of Burst

> Root Cause Investigation Performed

- Root Cause Panel consisted of representatives from Navy, Army, KDI and EDC
- ♦ 24 Potential Root Causes were identified
- Over land tests did not show same bi-modal response
- Army has never seen bi-modal response in MOFA testing
- Lot B testing did not show bi-modal response
- > Phenomena remains unexplained

Test Results

- ♦ MIL-STD-331 tests
 - Gross Leaks
 A
- Ballistic Tests in ET, PD, & HOB modes
 - * Duds
 - * Prox failures (PD instead of HOB & no TM)
- Passed E3 testing

Investigated failures, renegotiated contract, continuing investigation prior to building next lot

> 10% Fail Gross Leak Test

MOFN Seal Locations with # Occurrences of Leaking During Lot B Qual Build Leak Tests

Radome to Collar O-Seal Damage

As Lot B Booster cup is screwed in- Excess RTV is forced up into the S&A

Change to method of sealing Booster cup lead to failures.

- Lot A RTV applied to top threads and was blown out by pressure as booster screwed in.
- Lot B RTV applied to bottom to prevent this.

Too much RTV squeezed into S&A and seized S&A creating a dud.

RTV on S&A Gears

Lot B – Prox failures

- Failure analysis conducted by KDI
 - Ferrite Core possibly cutting Transceiver Flex Circuit during gun launch
 - Spin drop tests to test this possibility
 - 2 of 10 had cut circuits
- Solutions: Key ferrite core to prevent rotation

MOFN Lot B - Prox Failures

Flex Circuit

Flat on Ferrite Core

Flat on Ferrite Core is supposed to face Flex Circuit

MOFN Lot B - PROX Failures

Conclusion

Mk 437 MOFN is on track to meeting the Navy's requirements for an affordable multi-mission fuze this FY

For Further information: Mr. Brian Will Naval Surface Warfare Center Dahlgren Division, Fuze Branch - Code G34 (540) 653-5481 DSN: 249-5481