2007 GLOBAL DEMILITARIZATION SYMPOSIUM AND EXHIBITION

Update on Demil Technology Programs at General Atomics

By Stan Rising & Jim Elliott May 16, 2007

Work Sponsors

Defense Ammunition Center, Joint Munitions Command, and Air Force at Tyndall AFB

Stan Rising Air Force Research Laboratory Tyndall AFB

BRIEFING OUTLINE

- iSCWO & Hydrolysis overview
- Current technology transition projects
- FY07/FY08 goals
- Conclusions

iSCWO PROCESS FLOW

SCWO

- SCWO destroys organics with no production of NO_X, SO_X, dioxins, furans or greenhouse gasses.
- Wastes are mixed with water and oxidized at 3400 psi and 1200F
- Suitable for pumpable organics including slurry mixtures of solid wastes
- Gaseous effluents dischargable to the air
- Liquid effluents dischargable to the sewer

Environmentally friendly waste processing technology

History of SCWO

- SCWO technology issues resolved in the 1990's
- Cost & reliability became impediments to operational demil & commercial applications
- iSCWO developed to resolved cost & operational reliability issues
- iSCWOs now penetrating market for selected demil & commercial applications
- 1st iSCWO undergoing operational tests

ADVANTAGES OF SCWO

- SCWO oxidizes organic wastes
 - Oxidation of a combustible material at temperatures and pressures above the critical point of water, 374°C and 22.1 MPa (3200 psi)
 - Complete oxidation to CO₂, H₂O, and inorganic acids (or salts) for most organic feeds
 - No acid gases, dioxins, furans, or particulates discharge
 - Minimal Gas Discharge Low NO_X, SO_X, CO, and TOC
 - Destruction of organic wastes occurs very quickly
- Process stability
 - Fully automated, easy & safe operation

Ultra clean, environmentally friendly waste processing technology

GA INDUSTRIAL SCWO (i-SCWO)

Objectives

- Simplified design targeted at specific applications
- Low capital cost
- Easy & quick fabrication
- Robust, reliable & industrial hardened
- Easy shipment & installation
- Small foot print
- Readily permitted
- Suitable for 7/24 operation
- Compatible with future energy conversion, HMRS or special feed prep modules
- Low risk

10 ton/day liquid waste processing unit

iSCWO EQUIPMENT LAYOUT

Hydrolysis

Hydrolysis Production Prototype Plant (HPPP) Located at Tooele Army Depot

HYDROLYSIS PROCESS FLOW

CAD HPPP FACILITY

Objectives & Status:

- Designed for demil of aluminum bodied CADs
- Design processing rate = ~2 tons/day
- Design & construction complete
- Checkout & systemization complete
- Optimization testing in progress
- Permitting in progress
- Adding a PAS

Over 360,000 CADs = 80 tons Demil'd

CURRENT TECHNOLOGY TRANSITION PROJECTS

- Tooele Army Depot (TEAD)
 - Base Hydrolysis
 - 3 GPM iSCWO
- Blue Grass Army Depot (BGAD)
 - 10 GPM iSCWO
- Alaska iSCWO
 - 3 GPM iSCWO

Jim Elliott General Atomics

STATUS OF TECHNOLOGY TRANSITION PROJECTS (TTPs)

• TEAD

- CADs Hydrolysis HPPP
- iSCWO (3 GPM)
- BGAD
 - iSCWO (10 GPM)
- Alaska
 - iSCWO (3 GPM)

TEAD TECHNOLOGY TRANSITION PROJECT

- CADs Hydrolysis HPPP
- iSCWO (3 GPM)

TEAD HYDROLYSIS TTP STATUS

- 2006 Systemization tests & "trial runs"
- Dec 2006 Received 3 NOVs from UTDEQ
- Jan 2007 Submitted CAP
- Apr Jun 2007 System mods & tests
- May 2007 UTDEQ approval of CAP
- Jun 2007 Update Risk Analysis
- Jul/Aug 2007 Rerunning "trial burns" for UTDEQ
- Oct 2007 Complete all required UTDEQ actions
- Mar 2008 Install PAS
- Early 2008 Permit issuance

Production Demil Operations Early 2008

TEAD ISCWO TTP STATUS

- 3 GPM iSCWO design complete
- iSCWO skid construction partially complete
- Building complete
- Awaiting further funding

BGAD TECHNOLOGY TRANSITION PROJECT

- 10 GPM iSCWO
- Grind/Slurry feed prep system
- Heavy metals removal system

BGAD TECHNOLOGY TRANSITION PROJECT

- Permitting: RCRA Part B permit application submittal schedule for Jun07
- Testing
 - Completed scale-up tests
 - Performed reactor fabrication tests
- 10 gpm iSCWO
 - Completed equipment design
 - Completed building design
 - Cleared site for building construction
- Completed conceptual designs for:
 - Grind/Slurry system conceptual
 - Heavy metals removal system

ALASKA ISCWO TECHNOLOGY TRANSITION PROJECT

- 3 GPM iSCWO design complete
- iSCWO skid construction partially complete
- iSCWO reactor fabrication nearing completion
- Site purchased 1 mile from Elmendorf AFB
- Building design work in progress
- RCRA Part B permit application started

FY07 & FY08 Plans

• TEAD

- Complete CADs HPPP operating permit
- Support CADs demil operations
- Build & install iSCWO unit

• BGAD

- Obtain RCRA Part B permit
- Construct the building
- Start iSCWO construction

Alaska

- Submit RCRA Part B permit application
- Complete iSCWO construction
- Complete building construction
- R&D
 - iSCWO energy recovery
 - Acid hydrolysis
 - Analysis & testing of other munitions for hydrolysis

CONCLUSIONS

- Current Technology Transition Projects (TTPs) are all going well
 - TEAD CADs Hydrolysis Facility
 - TEAD 2 GPM iSCWO facility
 - BGAD 10 GPM iSCWO
 - Alaska 3 GPM iSCWO

