Contained Burn -Tactical Demilitarization Demonstration (TaDD)

R. Robert Hayes El Dorado Engineering, Inc. – May 2007

Outline

- Contained Burn Technology
- TaDD Project
 - Design
 - Permitting

Key Advantages of Contained Burn

- Pollution Control
- Relatively Simple Permitting

Elements of Contained Burn

- Containment vessel
- Feed system
- Ignition source
- Pollution control system
- Controls

Pollution Control System

- Tailor system to chemistry of waste
- Gas cooler/cooling air reduces temperature
- Cyclone captures sparks, ash
- Filtration
 - Bag house plus HEPA
 - Wet or dry scrubbing
- Carbon filter
- Fan and stack provide draft

Recent Applications

• Subscale test unit

• Continuous production units

• Batch unit for tactical rocket motors

Subscale Test Unit: Batch

Subscale Test Unit: Batch

Continuous System: Vessel

Tactical Rocket Contained Burn

PROJECT DIVIDED INTO 5 PHASES Targeted at Shillelagh Missile

- Phase I: Preliminary Design Current Contract
- Phase II: Final Design Current Contract
- Phase III: Install
- Phase IV: Test
- Phase V: Upgrade Surrounding Facilities for Production

TaDD TEAM

CLIENT: CRANE NSWC SITE: HWAD – Day and Zimmerman

• El Dorado Engineering (EDE)

- Design
- Site safety plan
- RCRA permit
- Installation
- Training

Subcontractors

- Tetra Tech
 - Air Permit Assistance
- Safety Management Services (SMS)
 - Safety
- Mangi Environmental
 - NEPA

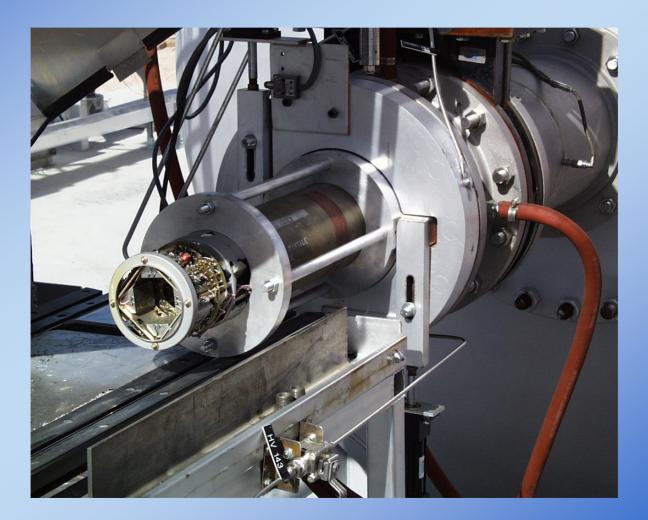
Rocket Motor Study

- Based on calculations of gas generation and burn temperature
 - All motors under 20 lbs. should be feasible
 - Calculations used conservative assumptions
 - All motors under 50 lbs. should be considered
- Larger or multiple tank design might allow 200 lb MLRS disposal

Rocket Emissions- General

- Double base
 - Burns cleanly
 - Lead compounds filtered efficiently
- Al/AP:
 - Al2O3: filtered effectively
 - Chlorinated compounds, HCl, removed by wet or dry scrubbing
- Contained burn units permitted as Subpart X, miscellaneous units

System Elements

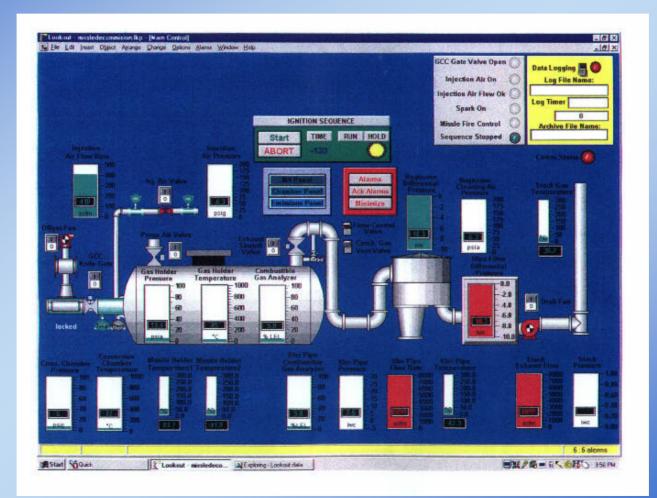

- Storage Areas/Prep. Bays
- RM Feeder/Cooling Chamber with Fume Hood
- Missile Holder
- Gas Conversion Chamber
- Gas Holder
- Baghouse and HEPA filters
- Stack/Fan
- Control Center

General Process Description

- Rocket Motor Preparation
- Removal/ Installation of Rocket Motor
- Remote Firing
- Pollution Control Sequence

• Target: 40 rockets per 8 hour shift

Shillelagh Missile in Fixture


Valve Retains Rocket Gases

Gas is Filtered Prior to Stack

PLC System Controls Batch Unit

PROGRESS

- Air Permit Complete
- RCRA Permit Complete
- Design Complete
- Site Safety Submittal Complete
- NEPA Complete
- On Time Under Budget

PERMITTING

- To date very successful
- General approach family of double base rocket motors
- Avoided costly tests and analyses
- RCRA
 - Recognized net decrease in emissions
 - Simple Class 2 modification
- Air
 - Demonstrated no net increase of emissions
 - Simple Modification
 - No additional risk assessment or modeling required

PROJECT DIRECTION

- This project was directed at the Shillelagh
- Funding Phases III-V currently postponed
- High interest in applicability for MLRS

POSSIBLE FUTURE MLRS TESTING AT ABERDEEN

Conclusion

- Contained burn: versatile, inexpensive, proven
 - Air bag propellants
 - Military propellants, explosives
 - Commercial energetic wastes
 - Contaminated trash
- Applicable to smaller and medium sized rocket motors
- Further study and development recommended for larger rockets (MLRS)