Data Quality Issues with Detonation Product Monitoring

Eric Erickson
NAWCWD, China Lake
(760)939-1638
eric.d.erickson@navy.mil

Global Demilitarization Symposium 17 May 2007

Contributors

- NAWCWD, China Lake
 - Eric Gogley
 - Ross Heimdahl
 - Allen Lindfors
 - Scott Pockrandt
- URS Corp
- Chemical Compliance Systems, Inc.

Monitoring OD Events

<u>Advantages</u>

- Simulation is unnecessary
- Sufficient atmospheric O₂ available for afterburning
- Issues of scale can be addressed
- Shrapnel interactions with surfaces is not an issue

<u>Disadvantages</u>

- Harsh sampling environment
 - Instrumentation often does not survive test event
- Substantial sample dilution
 - Dilution increases with time
- Inhomogeneous plume
- Mobile plume (sample)

Monitoring Contained Detonations

<u>Advantages</u>

- Better control of variables
- Produce stationary, homogeneous plume
- More time to collect sample
 - Lower detection limits
- Limited dilution volume
- Protection of sampling instrumentation

<u>Disadvantages</u>

- Limited energetic size
- Requires correction for leaks
- Shrapnel issues
 - Cased/uncased ordnance
 - Extraneous contributions from wall collisions
- Blank may not be representative

Sampling Approaches

Past Approaches

Minimized assumptions about the sample

Designed for sample constraints

Development intensive Validation questionable

≤ 5 min sampling time

Current Approaches

EPA validated methods

Standardized QA/QC

Methods validated for stack emissions may not be applicable to monitoring detonation products

≥ 20 min sampling time

Comparison

Detonation Process	EPA Sampling Methodology
Instantaneous emission process – Chemistry is over in ms to s	Methods developed and tested on continuous emission sources – 20 min sampling period
Information desired is total quantities emitted	Generates an average of concentrations during the sampling interval

Assumptions Necessary for the Application of EPA Methodology to Contained OD Monitoring

- Static (unchanging) sample during the sampling interval
- Contained detonation process is representative of OD treatment event
 - Same Products
 - Scaleable
 - No extraneous contaminants

Static Sample Assumption

- Use particulates to illustrate the issues
 - Many other analytes of interest are affiliated with the particulates
- Atmospheric sampling requires analytes to remain suspended in the air.
 - If it is not in the chamber air we are not measuring it

Processes that Alter Atmospheric Particulate Distributions in Chamber Studies

- Settling usually predominates in a static sample
- Other losses may predominate when stirred to minimize settling

Experimental Confirmation of Particle Losses

- Experiment designed to determine if the losses are significant
- Detonate cased ordnance in a contained chamber
- Wait 3 min for settling of large particulates
- Used a blower to stir the chamber air
- Measured TSP (total suspended particulates) for varying time periods
- Calculated and plotted average particle density over the sampling period
 - Total mass of particles collected on filter divided by the volume of air passed through the filter

Experimental Confirmation of Particle Losses

- Results: Average concentration of particulates at 20 min sampling period is roughly 1/3 of measured average at a 4 min sampling interval
- •Test needs to be rerun monitoring only $PM_{10}/PM_{2.5}$

CD/OD Representative Assumption

Phenomenon	OD	CD
Reaction scale effects	✓	-
Cased ordnance	✓	-
Entrained soil	✓	-
Wall effects: adsorption, catalysis, and thermal retention	-	•
Multibodied collisions (needed for reformation products, i.e. PAH, PCB)	Very Low	Higher
Chamber surface contributions	-	~

Wall Effects Involving Shrapnel

Observed Impact Sites Brass on Steel Walls

Artifact Elimination

 Blanks are used to eliminate contributions in the sampled matrix that are not present as a result of the tested item.

Contained Detonation Blanks

- The conventional approach to collecting blanks is to pass an equivalent volume of air through the trapping media without detonating ordnance
 - These samples do not include materials knocked from surfaces by the detonation shock wave
 - Additional material knocked from surfaces as a result of shrapnel collisions are also not included in these blanks
- The result is an overestimate of emissions

Conclusions

- Underlying assumptions for EPA sampling methodology to monitor contained detonations are not necessarily applicable to OD emissions monitoring
 - The static sample assumption results in an <u>under-estimate</u> of emissions
 - Most causes for failure of the CD assumption result in an <u>over-estimate</u> of emissions

What Now?

- Continue to ignore these issues
- Apply a "fudge factor" to current data
- Regenerate all emission factor data with better, relevant sampling methods
- Modify all current and future monitoring efforts to accurately quantify OD emissions
 - Shorter sampling times with similar detection capabilities
 - Validation is needed for shorter sample time technologies to demonstrate data quality
 - Approaches need to be developed to compensate for errors caused by the assumption that CD is representative of OD

