The Health Risk Assessment for Treatment of Energetic Wastes by Open Detonation at China Lake

Laurie Zellmer * Eric Erickson Thomas Boggs Brenda Abernathy

Global Demilitarization Symposium Reno, NV May 14-17, 2007

Participating Organizations

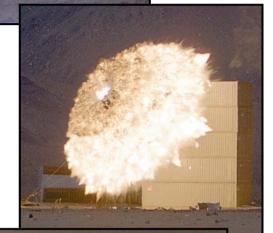
- NAWCWD China Lake
- NAWS China Lake
- URS Corporation
- Chemical Compliance Systems, Inc.

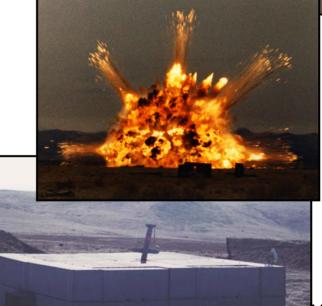
Main Topics

- China Lake and its OD Facility
- Permitting and the Original Health Risk Assessment (HRA)
- Four Steps of the HRA
- HRA Results
- Tracking OB/OD Events
- Permit Limitations

- Located in Upper Mojave Desert Arid climate
 >330 clear days per year
- Navy's largest Research, Development, Test, & Evaluation (RDT&E) facility
 Land (orange): 1,100,000 acres or 1700 square miles
 <u>Airspace (blue)</u>: 12,500,000 acres or 19,600 square miles

Minimal Encroachment Little population growth Mainly surrounded by BLM land


China Lake Mission


- RDT&E of weapons systems, software integration, and energetic materials
- In performing mission... Generate 100,000 to 300,000 pounds of energetic waste per year
 - Cannot transport off-CL
 - Must treat on-site

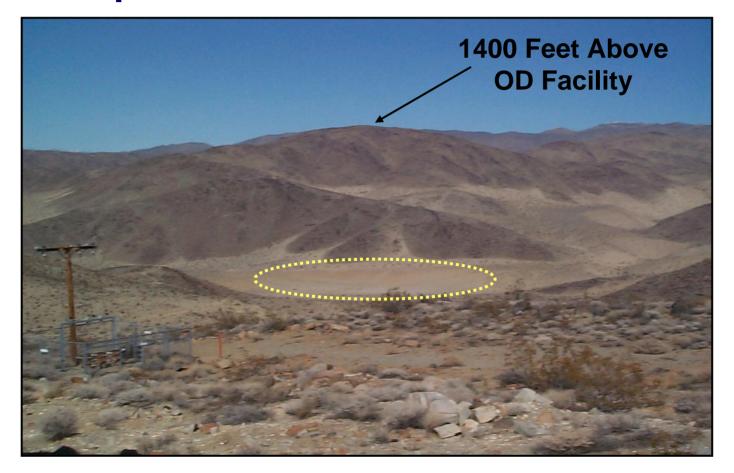
Energetic Wastestreams Generated

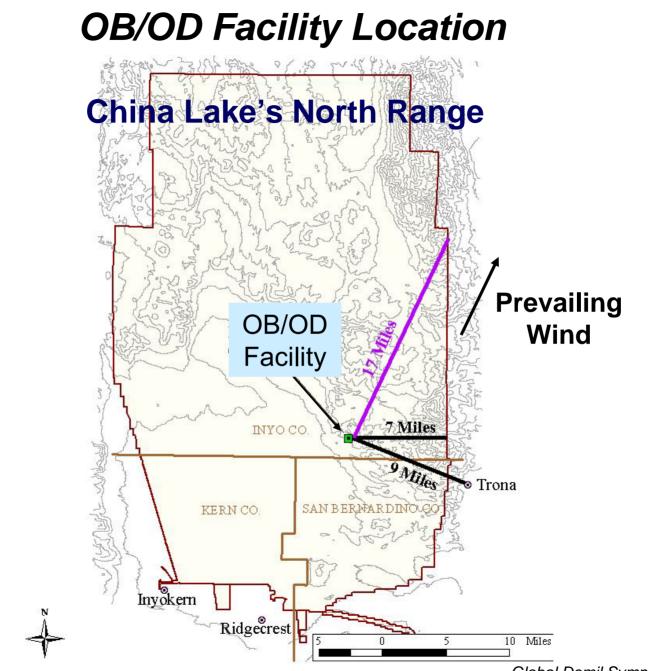
Munitions

- Expired/Excessed (Standard Items)
- RDT&E (NonStandard Items)

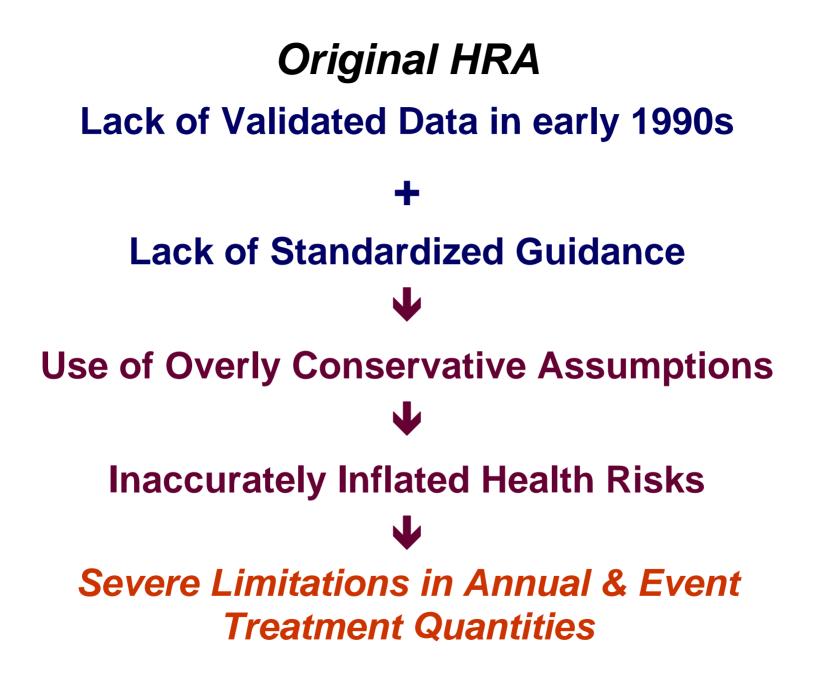
Laboratory R&D

- Leftover scrap from mixes/casting
- Energetic-contaminated "trash" (e.g. rags, gloves)
- Samples
- Contaminated solvents




Current Method of Treatment

- <u>Open Detonation</u> Primary method of treatment Rarely Open Burn; Last OB August 1998
- OD directly on ground (Waste is NOT buried)
- Range Limit = 15,000 lbs Explosive Weight


View of OB/OD Facility (One Mile to South & 700 Feet Above) Arid & Mountainous Depth to Groundwater is > 400 feet

Permitting China Lake OB/OD Facility

- Currently operates under:
 - RCRA (Hazardous Waste) Part A Interim Status Permit
 - Clean Air Act Title V Permit
- Permitting Requirements
 - Numerous
 - Human Health Risk Assessment (HRA)
- Preparation of original HRA started in early 1990s with direction from CA EPA

Revisions to the Original HRA

- With expertise from our technical codes, completed four major efforts:
 - 1) Emissions Factor (EF) Database
 - 2) Fate of Metals (casings & paints/coatings)
 - 3) Chamber Tests for OD of Explosive-Contaminated Wastes (ECW)
 - 4) Alternative Technology Assessment

Copies of all reports are available!

• New effort to address limited EFs for metals: Presentation by Eric Gogley at end of this session: "Open Detonation: Metal Emissions – Phase 1"

Revisions to the Original HRA

Our New Approach

- Science-based
- Technically accurate
- Data-driven
- Regulatory agencies support

Revised HRA - Guidelines

Air Toxics Hot Spots Program Risk Assessment Guidelines

The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments

August 2003

Secretary for Environmental Protection California Environmental Protection Agency Winston H. Hickox

Director Office of Environmental Health Hazard Assessment Joan E. Denton, Ph.D.

Four Steps of the HRA

1) Hazard Identification

Identifies emission sources, chemicals that cause adverse health effects, & emission rates

- 2) Exposure Assessment
 - Predicts potential dose of emissions to the surrounding population through air dispersion modeling
- 3) Dose-Response Assessment

Describes expected human response to a level of exposure using toxicity factors for the chemicals of concern

4) Risk Characterization

Combines the results of Steps 2 & 3 to estimate potential for adverse health effects

Four Steps of the HRA

1) Hazard Identification

Identifies emission sources, chemicals that cause adverse health effects, & emission rates

2) Exposure Assessment

Predicts potential dose of emissions to the surrounding population through air dispersion modeling

3) Dose-Response Assessment

Describes expected human response to a level of exposure using toxicity factors for the chemicals of concern

4) Risk Characterization

Combines the results of Steps 2 & 3 to estimate potential for adverse health effects

Emission Sources

DIRECT – Generated directly from the OB or OD event

- Waste Items OB & OD
 - Energetic Components
 - Nonenergetic Components

Energetic-Contaminated Waste (ECW) → Packaging, rags, plastic, gloves, foil,

etc contaminated with energetics

Munition Components

→ Circuitry found in guidance & control sections

Emission Sources

DIRECT – Generated directly from the OB or OD event

- Fuel OB Only
 - Wood
 - Diesel
- Crater Dust OD only

Emission Sources

INDIRECT – Generated from activities that support the waste treatment activities

- Windblown dust OB & OD
- Grading the OD facility soil
- Ash handling OB only

Chemicals of Concern & Emission Factors

See Backup Slides

FOUR STEPS of the HRA

1) Hazard Identification

Identifies emission sources, chemicals that cause adverse health effects, & emission rates

2) Exposure Assessment

Predicts potential dose of emissions to the surrounding population through air dispersion modeling

3) Dose-Response Assessment

Describes expected human response to a level of exposure using toxicity factors for the chemicals of concern

4) Risk Characterization

Combines the results of Steps 2 & 3 to estimate potential for adverse health effects

Air Dispersion Models

<u>OBODM</u> (EPA 2003)

- Stem & mushroom cloud (OD)
- OB Events
- → Used China Lake EFs, not library of EFs in OBODM

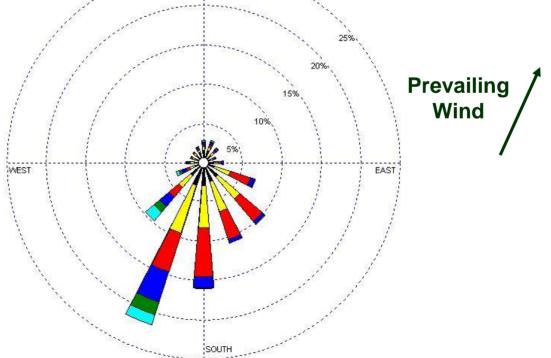
ISCST3

- Low-level dust cloud (OD)
- Grading OD Facility Soil
- Ash handling (OB)
- Diesel & wood combustion (OB)
- Windblown dust (OD & OB)

Upper Level

Stem

Low Level

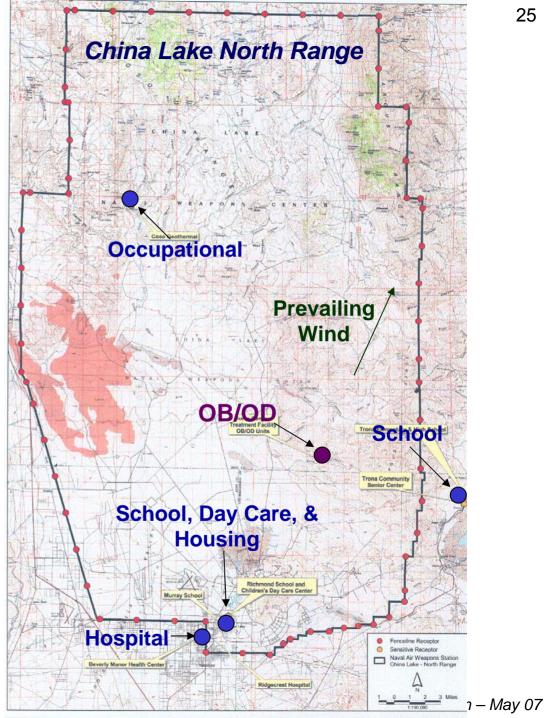

Step 2 – Exposure Assessment

Plume Heights

 Adjusted input parameters (fuel heat content, burn rate or time, emission strength) for both dispersion models until results represented conditions witnessed in the field

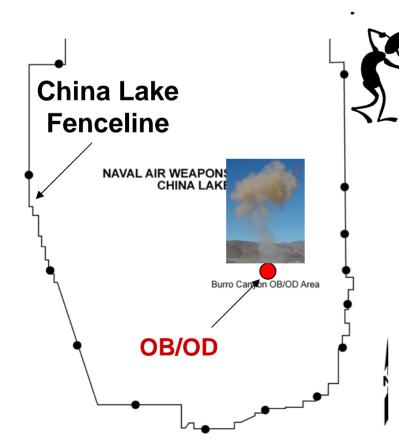
Meteorological Data

- Met station located 1 mile south & 700 feet above the OB/OD facility
- Use 4 years of surface sequential hourly data
- Met data limited to when emissions typically occur
 (0900 to 1700)
 VORTH
 25%
 25%
 Describer 1


Step 2 – Exposure Assessment

Receptors

- 66 at Fenceline: **Every 22.5 degrees Augmented with** additional
- Occupational (on-Station)


Sensitive

(on & off-Station)

Exposure Routes

- Inhalation, ingestion, dermal contact with soil, human milk ingestion by infants
- Maximum Exposed Individual (MEI) approach

- Continuous exposure
- Same fenceline location
- 24 Hours/Day
- 70 Years
- Residential scenario

Actual risks are substantially lower!

FOUR STEPS of the HRA

1) Hazard Identification

Identifies emission sources, chemicals that cause adverse health effects, & emission rates

2) Exposure Assessment

Predicts potential dose of emissions to the surrounding population through air dispersion modeling

3) Dose-Response Assessment

Describes expected human response to a level of exposure using toxicity factors for the chemicals of concern

4) Risk Characterization

Combines the results of Steps 2 & 3 to estimate potential for adverse health effects

Toxicity Values

Used published toxicity values from five sources in a progressive manner chosen by regulatory agencies

- 1) Air Toxic Hot Spots Program Risk Assessment Guidelines (2003)
- 2) Oak Ridge National Lab Risk Assessment Information System RAIS/IRIS (2003)
- 3) EPA Region 6 Human HRA Protocol for HW Combustion Facilities (1998)
- 4) Risk Assessment Guidance for Superfund (1995)
- 5) EPA Region 9 Preliminary Remediation Goals (2002 & 2004)

Surrogate compounds used where no values exist!

FOUR STEPS of the HRA

1) Hazard Identification

Identifies emission sources, chemicals that cause adverse health effects, & emission rates

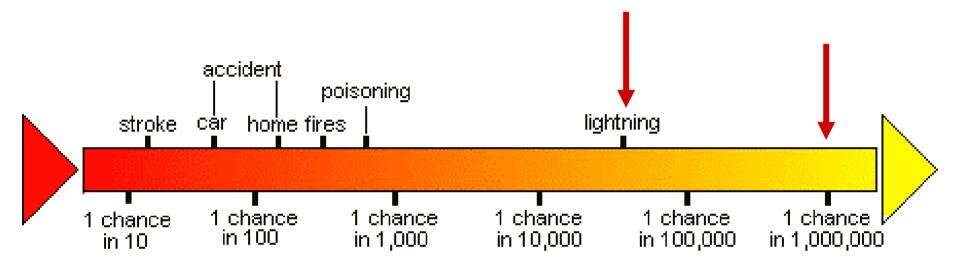
2) Exposure Assessment

Predicts potential dose of emissions to the surrounding population through air dispersion modeling

3) Dose-Response Assessment

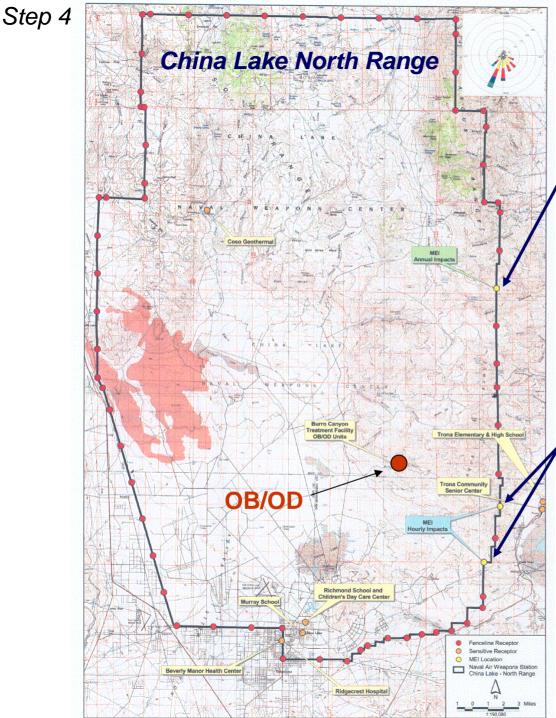
Describes expected human response to a level of exposure using toxicity factors for the chemicals of concern

4) Risk Characterization


Combines the results of Steps 2 & 3 to estimate potential for adverse health effects

Health Effect Categories

- Lifetime risk of developing <u>cancer</u> <u>ANNUAL</u> Regulatory Threshold = 1 in one million at the MEI
- Potential for <u>chronic noncancer</u> effects <u>ANNUAL</u> Regulatory Threshold = Hazard Index (HI) of 1.0 at the MEI


• Potential for <u>acute noncancer</u> effects <u>HOURLY</u> Regulatory Threshold = HI of 1.0 at the MEI

Putting 1 in One Million Risk in Perspective

Greater risk of being hit by lightening than the annual regulatory threshold for cancer risk!!

Source: "Air Pollution & Health Risk" EPA Publication 450/3-90-022 (1991)

Location of MEIs

Long Term (70 year) MEI

- Cancer Risk

- Chronic Noncancer Effects Uses one year average wind speed & direction that represents all 70 years

<u>Short Term (Hourly) MEI</u>

- Acute Noncancer Effects Uses recorded worst-case wind speed & direction for any one hour during 0900 to 1700

HRA Results

Possible <u>ANNUAL</u> Treatment Quantities of Waste Based on Health Effects *

OPEN DETONATION				
Highest Family	13,281,000 Ibs/year	Triple-Base Gun Propellant		
Lowest Family	544,000 Ibs/year	Pyrotechnics		
OPEN BURN				
Highest Family	2,727,000,000 lbs/year	TNT/Aluminum		
Lowest Family	4,349,000 Ibs/year	Single-Base Gun Propellant		

* Health effects from crater & windblown dust are included in each applicable family

Possible <u>HOURLY</u> Treatment Quantities of Waste Based on Health Effects *

OPEN DETONATION			
Highest	8,504,000	Double-Base Rocket/Missile	
Family	Ibs/hour	Propellant w/out Pb	
Lowest	16,000	Double-Base Rocket/Missile	
Family	Ibs/hour	Propellant with Pb	
OPEN BURN			
Highest	30,257,000	Double-Base Rocket/Missile	
Family	Ibs/hour	Propellant w/out Pb	
Lowest	15,000	Double-Base Rocket/Missile	
Family	Ibs/hour	Propellant with Pb	

* Health effects from crater & windblown dust are included in each applicable family

Tracking OB/OD Events SETUP TRACKING CATEGORIES ENERGETIC WASTES

Use the energetic families from the EF analysis!

Melt Cast Explosives		
A1	TNT based (Comp-B, Cyclotol, Octol)	
A2	TNT / Aluminum (H-6)	
Plastic Bonded Explosives (PBXs)		
B 1	Nitramine / binder	
B2	Nitramine / binder / aluminum	
B3	Nitramine / binder / aluminum / AP	
Other Explosives		
C1	e.g. PbN3, ammonium picrate	
Pyrotechnics (OD ONLY)		
Р	Pyrotechnics	

Gun Propellants		
IA	Single base (NC)	
IB	Double base (NC / NG)	
IC	Triple base (NC / NG / NQ)	
Rocket/Missile Propellant		
IIA	Double base with lead	
IIB	Double Base w/o Lead	
IIC	AP / binder / Al	
IID	AP / binder / Al / nitramines (>50% AP)	
IIE	AP / binder reduced smoke	
IIF	Nitramine/Energetic Binder/Al/ <20% AP	

Tracking OB/OD Events

SETUP TRACKING CATEGORIES

NONENERGETIC WASTES

OB Only

Wood

Diesel

Ash Handling

W = ECW

M = Munition Components

Grading OD Area

36

CHARACTERIZE EACH WASTE ITEM

- →Identify Waste Item Components
- Comprise the waste item
- Vary from one to many
- Both energetic & nonenergetic

M-1 CHAIN Paper Wrapper, Tetrytol, Det Cord Covering, & Det Cord PETN

COMP A-3 Comp A-3 Cardboard Box, Plastic Bag, & Comp A-3

PLACE EACH COMPONENT IN A TRACKING CATEGORY

EXAMPLE

"PBXN-109 Explosive Scrap w/ Contaminated Rags & Plastic" Gross weight (includes packaging) = 11 lbs Explosive weight = 6 lbs

Component	Category	Amount (lbs)
PBXN-109	B2	6
Packaging & Contaminated rags & plastic	W (for ECW)	5

APPLY the EQUIVALENCY SYSTEM to the

TRACKING CATEGORIES

 To accommodate tracking the treatment of various types & quantities of waste generated from China Lake's RDT&E mission

How Does It Work??

Note that each tracking category has annual & event permit limits...

APPLY the EQUIVALENCY SYSTEM to the

TRACKING CATEGORIES

- Treat the <u>maximum quantity</u> allowed by the permit annually (or hourly) for <u>one category</u>
- OR <u>fraction</u> of the maximum quantity allowed by the permit annually (or hourly) for <u>several different</u> <u>categories</u>
- Sum of all fractions (ratio of the actual quantity treated to the permitted quantity) cannot exceed 1.0 or 100%!
- → Hypothetical example included in the backup slides

Permit Quantity Limiting Factors

- FOUR factors limit the quantities of waste treated
- The permit sets these quantities
- 1) <u>Health Effects from the HRA</u>
- 2) Air Quality Standards

Criteria pollutants (Federal & State) Both daily & annual limits

3) Explosive Safety

Each OD event ≤15,000 lbs of <u>energetics only</u> Each OB event ≤1000 lbs of <u>energetics only</u> No annual safety limits

Permit Quantity Limitations

4) Logistics - Based on available range time, available EOD staff, CL's varying wastestream, time for event setup (daylight only), & "Burn Day" designation

ANNUAL	OD	<i>Average</i> of 1 15,000 lb Event/Day = 5,475,000 lbs/year
	OB	Average of 1 1,000 lb Event/Day = 365,000 lbs/year
HOURLY	OD	30,000 lbs/Hr (energetic AND nonenergetic categories)
	OB	2,000 lbs/Hr (energetic AND nonenergetic categories)

The factor with the lowest quantity is used in the permit!

ANNUAL Permit Quantity Limitations

	# of TRACKING CATEGORIES			
LIMITING FACTORS	Health Effects	Air Quality	Explosive Safety	Logistics
OD	6*	0	N/A	12
OB	0	0	N/A	18

* Cancer effects from cadmium in metal casings

HOURLY Permit Quantity Limitations

	# of TRACKING CATEGORIES			
LIMITING FACTORS	Health Effects	Air Quality	Explosive Safety	Logistics
OD	0	2*	0	16**
OB	0	0	0	18

* Crater dust

** Note that the logistics factor is also limited by the safety factor of 15,000 lbs/event of energetics

Conclusions

- China Lake's revised HRA approach is sciencebased, data-driven, technically accurate AND developed with participation from the regulatory agencies
- Health risks from the revised HRA are several orders of magnitude lower than the original HRA
- Using the MEI scenario, actual risks are much lower
- Logistics is the biggest limiting factor for permit quantities, NOT health risks
- Tracking equivalency system allows for operating flexibility

BACK-UP SLIDES

Step 1 – Hazard Identification

Direct Emissions – Energetic Wastes

Evaluation Process Started with Huge Matrix of Emission Factor (EF) Data

EF Data from Over 100 Tests —

~1000 Compounds

CHEMNAME	TEST	TEST	TEST	TEST	TEST	TEST	TEST
	OD-1	OD-2 Exp.D	OD-3 RDX	OD-4	OD-5	OD-6	OD-7
	CompB	Bulk	Bulk	TNT Bulk	TNT	20mm HEI	40mm
	Bulk			Surface	10-m	Cart.	HEI Cart.
				OD	AGL OD		
	A1	C1	B1	A1	A1	IA	B1
Acenaphthylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acetaldehyde	а	а	а	а	а	0.00E+00	0.00E+00
Acetic Acid	а	а	а	а	а	0.00E+00	0.00E+00
Acetone	а	а	а	а	а	0.00E+00	0.00E+00
Acetonitrile	а	а	а	а	а	0.00E+00	0.00E+00
Acetophenone	а	а	а	а	а	0.00E+00	0.00E+00
Acetylene	а	а	а	а	а	1.80E-04	4.20E-05
Acrolein	а	а	а	а	а	0.00E+00	0.00E+00
Acrylonitrile	а	а	а	а	а	0.00E+00	0.00E+00
Allyl Chloride	а	а	а	а	а	0.00E+00	0.00E+00
Aluminum	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.60E-04	1.50E-02
Amino-2,6-Dinitrotoluene,4-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Amino-4,6-Dinitrotoluene,2-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Antimony	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Arsenic	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Barium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Refer to: "Emissions from the Energetic Component of Energetic Wastes During Treatment by OD", NAWCWD China Lake, June 2005

Direct Emissions – Energetic Wastes

TO SIMPLIFY:

- 1) Eliminated chemicals... e.g. duplicates, those not formed from OBOD
- 2) Eliminated tests... e.g. waste buried, water-suppressed

Reduced to over 500 compounds & 44 tests

- 3) Validated EF data... e.g. Eliminated contaminated samples, correct for background levels
- 4) Evaluated the compounds by: Health risk AND Available test data
- 5) Provided surrogate chemicals for those compounds with a health risk but without EF data

Step 1 – Hazard Identification

Direct Emissions – Energetic Wastes

6) Each set of EF test data placed into one of 16 energetic families indicative of our wastes

- Emissions within a family are similar because the family's constituents are similar

	Melt Cast Explosives		
A1	TNT based (Comp-B, Cyclotol, Octol)		
A2	TNT / Aluminum (H-6)		
	Plastic Bonded Explosives (PBXs)		
B 1	Nitramine / binder		
B2	Nitramine / binder / aluminum		
B3	Nitramine / binder / aluminum / AP		
	Other Explosives		
C1	e.g. PbN3, ammonium picrate		
	Pyrotechnics		
Р	Pyrotechnics		

	Gun Propellants		
IA	Single base (NC)		
IB	Double base (NC / NG)		
IC	Triple base (NC / NG / NQ)		
	Rocket/Missile Propellant		
IIA	Double base with lead		
IIB	Double Base w/o Lead		
IIC	AP / binder / Al		
IID	AP / binder / Al / nitramines (>50% AP)		
IIE	AP / binder reduced smoke		
IIF	Nitramine/Energetic Binder/Al/ <20% AP		

Step 1 – Hazard Identification

Direct Emissions – Energetic Wastes

- 7) Combined OB and OD EF test data
- 8) For the 3 families* without EF test data, chose surrogate families
- 9) Used <u>maximum</u> EFs for each compound from all of the tests in each family

	Melt Cast Explosives	Gun Propellants	
A1	TNT based (Comp-B, Cyclotol, Octol)	IA	Single base (NC)
A2	TNT / Aluminum (H-6)	IB	Double base (NC / NG)
	Plastic Bonded Explosives (PBXs)	IC	Triple base (NC / NG / NQ)
B1	Nitramine / binder		Rocket/Missile Propellant
B2	Nitramine / binder / aluminum*	IIA	Double base with lead
B3	Nitramine / binder / aluminum / AP*	IIB	Double Base w/o Lead
	Other Explosives	IIC	AP / binder / Al
C1	e.g. PbN3, ammonium picrate	IID	AP / binder / Al / nitramines (>50% AP)*
	Pyrotechnics	IIE	AP / binder reduced smoke
Р	Pyrotechnics	IIF	Nitramine/Energetic Binder/Al/ <20% AP

Direct Emissions – NonEnergetic Wastes EXPLOSIVE-CONTAMINATED WASTE (ECW)

- Rags, gloves, plastic, aluminum foil, packaging, etc. contaminated with energetics
- Mainly from R&D lab activities
- No EF test data for OD of ECW
- Small-scale chamber tests conducted at China Lake

Tests designed to maximize dioxin formation

Refer to: "Open Detonation Simulation Tests for Explosive-Contaminated Waste", Nov 2003

Contd – Direct Emissions – NonEnergetic Wastes

EXPLOSIVE-CONTAMINATED WASTE (ECW)

Dioxin EFs – China Lake Tests

Species	Comp A-3 Donor EF	ECW EF	Original HRA*
TEQ as 2,3,7,8- TCDD	1.6e-13	2.0e-11	2.2e-8

Because of higher temperatures from the AP... OD of ECW is cleaner than OD of donor... except for dioxins!

* From medical waste incinerator model

Direct Emissions – NonEnergetic Wastes

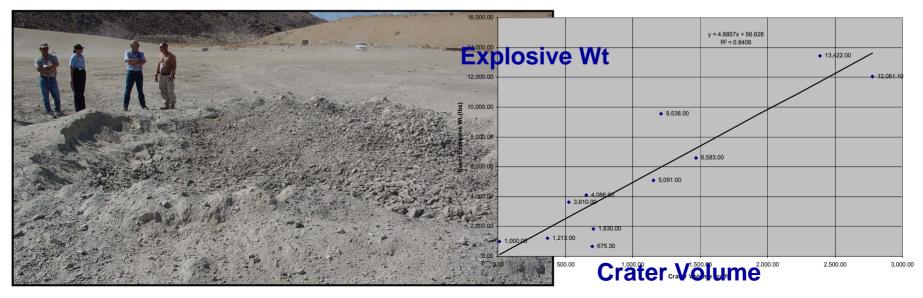
MUNITION COMPONENTS

- Circuitry found in the guidance & control sections
- Difficult to determine accurately
- Use EFs from ECW tests
- For treatment of each "allup" munition, use the weight from older Sparrow missile with lots of circuitry = 212 lbs

Direct Emissions – Fuel for OBs

EFs for residential fireplaces from EPA's AP-42 Section 1.9

DIESEL FUEL


Diesel Particulate Matter – EFs from Source Test Report for Open Burn Simulator, URS, Jan 2000 (JP-5 EF)

Toxics – EFs from Ventura County APCD 2001

Direct Emissions

DUST EMISSIONS from OD CRATER

- Measured volume of several craters
- Plotted Explosive Wt vs Crater Volume
- For PM₁₀ & PM_{2.5} emissions, analyzed soil samples for particle size distribution
- For toxic compounds, used actual soil sample data

Indirect Emissions

WINDBLOWN DUST (OB & OD)

- Used 39 acres... includes sides of canyon & disturbed area
- For PM₁₀ and PM_{2.5} emissions, use "Windblown Dust from Unpaved Roads" Almanac Emission Projection Data by EIC, CARB 2005 (Section 7.13 – Updated Aug 1997)
- For toxic compounds, use actual soil sample data

Step 1 – Hazard Identification

Indirect Emissions

DUST FROM GRADING

- Used 5.5 acres of disturbed area for 1 event in 1 hour
- For PM₁₀ and PM_{2.5} emissions, use EPA AP-42 EFs for heavy construction, Section 11.9
- For toxic compounds use actual soil sample data

Indirect Emissions

ASH HANDLING (OB Only)

- For PM-10 & PM-2.5 EFs, use Mechanical Handling of Ash from EPA's AP-42 (Section 13.2.4)
- Toxic compounds Analytical results of ash

Contributions to Cancer Risk

	OB	OD
Primary Pathways	Inhalation	Inhalation Dermal Soil Ingestion
Primary Chemicals	Benzidene 1,3-Butadiene 7,12- Dimethylbenz(a)ant hracene, 3,3-Dimethybenzidine RDX	Arsenic Cadmium

Contributions to <u>Chronic</u> Noncancer HI

	OB	OD
Target Organ	Eye Skin Respiratory System	Eye Skin Respiratory System
Primary Chemicals	Acrolein Aluminum Ammonia Arsenic Benzene Chlorine DEHP Dimethyamine Hydrogen Chloride Hydrogen Cyanide Silica	Aluminum Arsenic Cadmium Chlorine Manganese

Contributions to <u>Acute</u> Noncancer HI

	OB	OD
Target Organ	Alimentary Tract Eye Kidney Skin Respiratory System	Alimentary Tract Eye Kidney Skin Respiratory System
Primary Chemicals	Arsenic Chlorine Copper Hydrogen Chloride Hydrogen Cyanide Nitrogen Dioxide	Arsenic Benzene Copper Chlorine Hydrogen Chloride Hydrogen Cyanide Nitrogen Dioxide

TRACKING – Hypothetical Example of Equivalency System

	Permit Limits		Amount	Used for	Used	
Category	Hour	Annual	Treated	Event	Annually	
EVENT 1						
А	100	5000	10	10%	0.2%	Each event is
В	200	8000	110	55%	1.3%	< 100%
С	300	10,000	70	23%	0.7%	
Totals for Event 1				88%	2.2%	Annual =
EVENT 2						2.2%
А	100	5000	20	20%	0.4%	+ 1.2%
В	200	8000	50	25%	0.6%	+ 1.6%
С	300	10,000	150	50%	0.2%	= 5%
Totals for Event 2				95%	1.2%	(<100%)
EVENT 3						
А	100	5000	5	5%	0.1%	
В	200	8000	40	20%	0.5%	
С	300	10,000	100	33%	1.0%	
Totals for Event 3				58%	1.6%	al Demil Symposium – May 07

62