Safety Management Services, Inc.

SUCCESSFUL INTEGRATION OF HAZARDS ANALYSIS METHODOLOGY INTO THE DESIGN, STARTUP, AND OPERATION OF A CRYOFRACTURE DEMILITARIZATION FACILITY

Presented by

Jason Howe

May 2007

Presentation Outline

PHA Team and Process Description

Integration of Hazards Analysis into Process Design and Operations

Issues and Resolutions

Summary

PHA Team and Process Description

PHA Team Members

Armament Research, Development and **Engineering Center Defense Ammunition Center General Atomics** Joint Munitions Command McAlester Army Ammunition Plant Safety Management Services, Inc. Sandia National Laboratory

Area Denial Artillery Munitions (ADAM)

Projectile Download Work Cell

ADAM Mine Cryofracture Process

Cryofracture Equipment Arrangement

Debris Handling/ Deactivation Equipment Arrangement

Integration of Hazards Analysis into Process Design and Operations

Preliminary Hazards Analysis (PHA)

Objective: Accident Prevention

- Systematic approach to identify, evaluate, and eliminate (or minimize) process hazards
 - Identify potential normal and abnormal failure scenarios
 - Identify risk minimizing solutions that are based on sound engineering principles
 - Ensure these solutions are incorporated into the design and operations of the process

Common Industry Approach

(Safety: An Add-on to the Engineering Process)

The Proactive Systems Approach

(Safety: An Integrated Part of the Engineering Process)

This approach allows for tailoring of design and operation specifications to inherently provide safe operations rather than safety add-ons

PHA Phases of MCDF

PHA Team Philosophy

"Safety by Design" Minimize Exposure of Personnel Minimize Quantities of Hazardous Materials Safety Specifications Engineering Controls Standards & Procedures Training

Approach

- 1. Utilized Logic Diagrams (Deductive Logic):
 - Identify "Critical Equipment/Components"
 - Evaluate System Interactions
- 2. Applied HAZOP Methodology (Inductive Logic)
 - Identification of Failure Scenarios & Causes
 - Evaluation of Potential Effects
 - Documentation of System Safety Features
 - Utilized Risk Acceptance Criteria to Prioritize Recommendations
- 3. PHA Teams Incorporated Safety Design Specifications "Real Time" with Design/ Operation Development
- 4. Updated PHA and Risk Acceptance Criteria as Design/ Operations Progressed

PHA Focus

- Normal Operations/Conditions
- Abnormal Operations/Conditions
- Human Factors
- Engineering Controls
- Procedures (Including Contingencies)
- Maintenance
- Facility Design & Siting
- Blast Calculations on Press

Potential Failure Scenarios Included:

- Friction
- Impact
- ESD
- Thermal
- Electrical
- Impingement
- Injury of Personnel
- Propagation of Fire/Explosion
- Shock
- Incompatibility
- etc...

Hazard Ranking: Risk Assessment Codes

High

Hazard Probability	Hazard Severity			
	(I) Catastrophic	(II) Critical	(III) Margin	(IV) Negligible
(A) Frequent	1A	2A	3A	4A
(B) Likely	1B	2B	3B	4B
(C) Occasional	1C	2C	3C	4C
(D) Seldom	1D		3D	4D
(E) Unlikely	1E	2E	3E	4E
Risk Categories:				
Extremely	High	М	edium	Low

Issues and Resolutions

Safety Issues

ISSUE

– Detonation of mines in the cryofracture press

RESOLUTION

- Detonations not likely due to accurate positioning of munitions in press (avoid detonators – just access the energetics)
- Blast calculations performed to determine the ability of the cryofracture press to withstand detonations

Safety Issues

RESOLUTION (cont.)

- Design and Procedural requirements
 - Press components were evaluated and all components are within the elastic region during a detonation
 - Establish a formal step-by-step procedure for inspection of the press and supporting equipment after a detonation

Press Blast Calculations

- 6 O/KMs detonating inside the press
- Design press to withstand multiple detonations
- Design containment of fragments

Press Blast Calculations (cont.)

Calculations to simulate:

- Blast Pressure (Shock Pressure)
- Quasi Static Pressure (Gas Pressure)
- Impulses

Press Blast Calculations (cont.)

Equipment Response

- Die Discharge chutes (including all bolts)
- O/KM discharge chute (including all bolts)
- O/KM blast valve (including all bolts)
- Debris discharge chute (including all bolts)
- Stop blocks (including all bolts)
- Press slide
- Press upper fragmentation shields (2) (including all bolts)
- Press lower fragmentation shields (2) (including all bolts)
- Tooling dies

ISSUE

– Accumulation of energetic material in the press

RESOLUTION

 Initial testing performed to show that while a very small amount of material coating of the interior of the press did occur, buildup and accumulation did not increase over time and remains at a steady state.

ISSUE

– Exposure of personnel to liquid nitrogen

RESOLUTION

- Remote cryobath operations
- Oxygen sensors throughout operation including load/unload room
- Oxygen alarm locally and in control room
- PDWC cryobath station fill valve has level control to prevent an overfill

RESOLULTION (cont.)

- Procedural requirements

- Only certified and trained individuals may work with liquid nitrogen
- Procedure for bath maintenance is required including inspection requirements
- Consider munition cryofracture room as a controlled access at all times
- Ensure that the oxygen sensors are regularly inspected and verified to be accurately calibrated
- Ensure that the seals or seam areas of the cryobath are regularly inspected to ensure integrity and that no leaks are present

ISSUE

 Dropped munitions or similar problem requiring entry of personnel

RESOLULTION

- Two man rule followed to allow operators to monitor each other
- Proper PPE as determined by MCAAP Safety
- Only certified explosives and munitions handlers to work in the area
- Oxygen level monitored and alarmed if low
- Alarms and lights prevent unauthorized entry into area

RESOLULTION (cont.)

 SOP requirements for handling dropped munitions after shutdown, as well as recovery of specific munitions and debris (including if a spool is detected missing, decontamination of munitions, equipment, and area, proper lock-out/ tag-out procedures for entering munition cryofracture room, and a door interlock to alarm and shutdown operations if munition cyrofracture door is opened)

Safety Issues

ISSUE

ESD initiation of mines

RESOLULTION

- Ground path associated with anodized aluminum transport fixtures; measurements verify that the fixtures have adequate grounding when in transport.
- Anti-static belts for conveyor systems and static dissipative brushes in the Mine Processing Station and conveyor systems

Summary

- All engineering design enhancements are incorporated into the design and documented in the HAZOP
- The PHA Team successfully integrated <u>hazards analysis</u> protocol into the design and operation process.
- Accurate & systematic hazards analysis is "KEY" to improve processing and isolate causes of potential mishaps.
- Hazard analysis in parallel with all phases of process development has significant <u>safety and cost avoidance</u> <u>benefits</u>.
- The cryofracture demilitarization facility project reflects <u>"Safety by Design"</u>.

Summary (Cont.)

Success of project allowed for additional cryofracture demilitarization facilities:

 Transportable Cryofracture Demilitarization Facility (PHA Team Meetings held in November and December, 2006; DHA submitted in January 2007)

 Cryofracture Demilitarization Facility at Hawthorne Army Depot (PHA Team Meetings held in February, 2007; DHA submitted in April 2007)