2007 Global Demilitarization Symposium & Exhibition

Destruction of Old Chemical Bombs using DAVINCH[™] at Kanda, Japan

Yutaka INADA, Katsuo KUROSE, Takashi WASHIDA

Operations at Kanda

Chemical Bombs from WW2 on the sea bed in Kanda Port

Locate Suspicious OCWs
Recovery of OCWs
Destruction of OCWs

Location of Destruction Facility and Work Area

Overall Schedule

Old Chemical Bombs Destructed at Kanda, Japan

Phase 1 (2004) 57 bombs

Phase 2 (2005) 538 bombs

Phase 3 (2006) 659 bombs

total 1,254 bombs

Old Chemical Weapons recovered from Kanda Port

50kg Yellow Bomb (2.3kg of High Explosive, 18 L of CA)

<u>15kg Red Bomb</u> (1.3kg of High Explosive , 368 g of CA)

Characteristics of Old Chemical Weapons recovered from Kanda Port

① Contain As,

- 2 Heavily deteriorated, deformed and corroded,
- ③ Covered with shellfish

	Chemical Agent	Explosive
Yellow Bombs	Mustard + Lewisite	Picric Acid + TNT
Red Bombs	DA, DC (similar to Clark I, II)	Picric Acid + TNT

Work Procedure at Kanda

Locate Suspicious OCWs (High Accuracy Magnetometer Detection)

Magnetic Anomaly Map

Magnetometer Detection Probe

Data Recorder

Detection Operation

Uncovering / Recovery of OCWs

①Uncover objects

2 Take X-rayed picture in the sea

③Put into a cylinder

(4)Recovery

Schematic Flow of Kanda Chemical Weapons Destruction Facility

DAVINCHTM

Detonation of Ammunition in Vacuum Integrated Chamber

Structural Characteristics

- Double-Shelled Cylinders (Outer & Inner Cylinders)
- Multi-layered Outer Cylinder (Pressurized container) Sequential Detonation
- Removable Inner Cylinder (Can be replaced if it is damaged)

Operational Characteristics

- Detonation in Vacuum
- Emulsion explosive as donor charge
- Implosion Process

Performance Characteristic • High-DRE only by detonation

Double walled structure with removable inner chamber

Inner chamber

Sacrificial chamber against fragments

Outer chamber High-pressure vessel against impulsive pressure

Multi-layered Outer Chamber

$\mathsf{DAVINCH}^{\mathsf{TM}}$ in operation

Remote Operation

Examination & Improvement

- Longer Chamber
- Minimize Amount of Explosives
- Improve Setting Method of Bombs
- Trace Arsenic Behavior
- Data acquisition of pressure, strain, composition of off-gas for further improvement
- Cleansing Shot
- Application of Cold Plasma

Cold Plasma

- Compact
- High efficiency burning
- Low power requirement
- Rapid start-up

Cold Plasma GlidArc Operating Principle

Thank you !

Hope we can be of service to you!!

a slide with my contact information

Name:Yutaka InadaPhone Number:+81-(0)78-261-7042Company:Kobe Steel Ltd.E-mail:y.inada@engnet.kobelco.co.jpinada.yutaka1@kobelco.com