

PICATINNY, NS

M789 LW 30mm HEDP Cartridge In-Bore Detonation Investigation

Presented By

Mr. John Hirlinger, ARDEC & Dr. Scott Kukuck, ARL

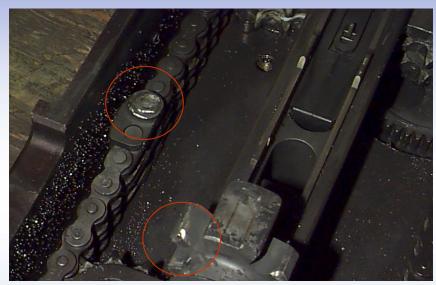
26 April 2007

Agenda

- 30mm Inbore/Hangfire Investigation
 - Apache M230 Weapon System Basic Information
 - Reported Problems
 - Total Incident Types / #'s & Groupings
 - Resultant Damage Examples
 - Investigation Team
 - Methodology Employed
 - Most Likely Causes & Actions Taken
 - Additional Recommendations
 - Summary

Apache M230 Weapon System

- Aircraft System
 - Turret Mounted Weapon
 - Closed Loop Linkless Feed System
 - Weapon Mounted Uploader/Downloader; 'D' Model Aircraft have Additional Ammunition Sideloader
 - First In/Last Out Ladder/Rail Magazine
- M230 Weapon
 - Externally Powered w/Electric Drive Motor
 - Single Barrel, Chain Driven Automatic Cannon
 - 625 ± 25 Shots per Minute Firing Rate
- M789 High Explosive Dual Purpose Cartridge
 - Aluminum Cartridge Case w/Electric Primer, IB52 Booster System & Double Base WC855 Ball[®] Powder
 - High Strength 4130 Steel Projectile w/PBXN-5 Explosive Fill
 - Spin Compensated Shaped Charge Liner
 - Point Initiating, Base Detonating Nose Mounted Fuze

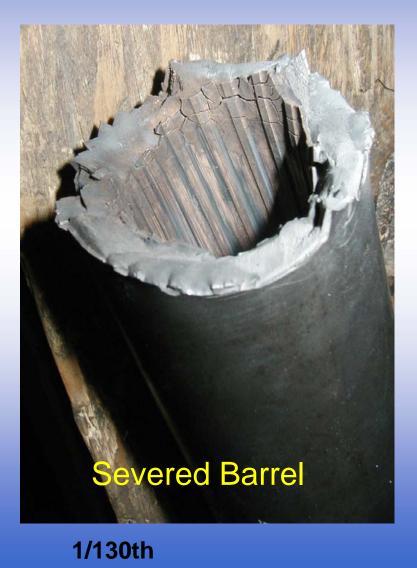

Original Incident Classifications

- Hangfire Ballistic functioning of the cartridge occurs outside of the dwell time of the weapon. Operating group & sometimes receiver damaged.
 - 23 Incidents since Aug 97
- Inbore Detonation Premature initiation in the barrel under the barrel support shroud. Barrel bulges, sometimes ruptures.
 - 21 Incidents since Aug 97
- Severed Barrel Premature initiation in the barrel near the muzzle. Muzzle is completely lost.
 - 2 Incidents Since Aug 97

Typical Damage Inbore Detonation

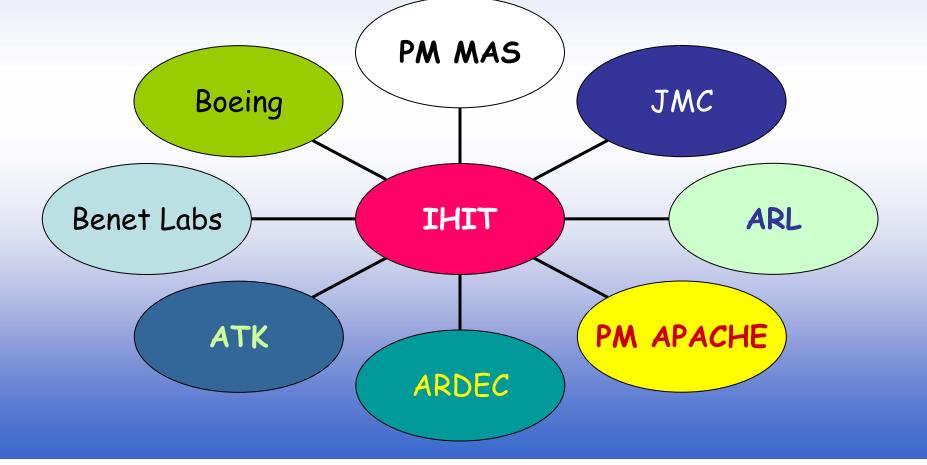
 Damage Similar to or Identical to Severe Hangfire/High Pressure Plus Barrel Cracking & Muzzle Break Impacts by Fragments

Typical



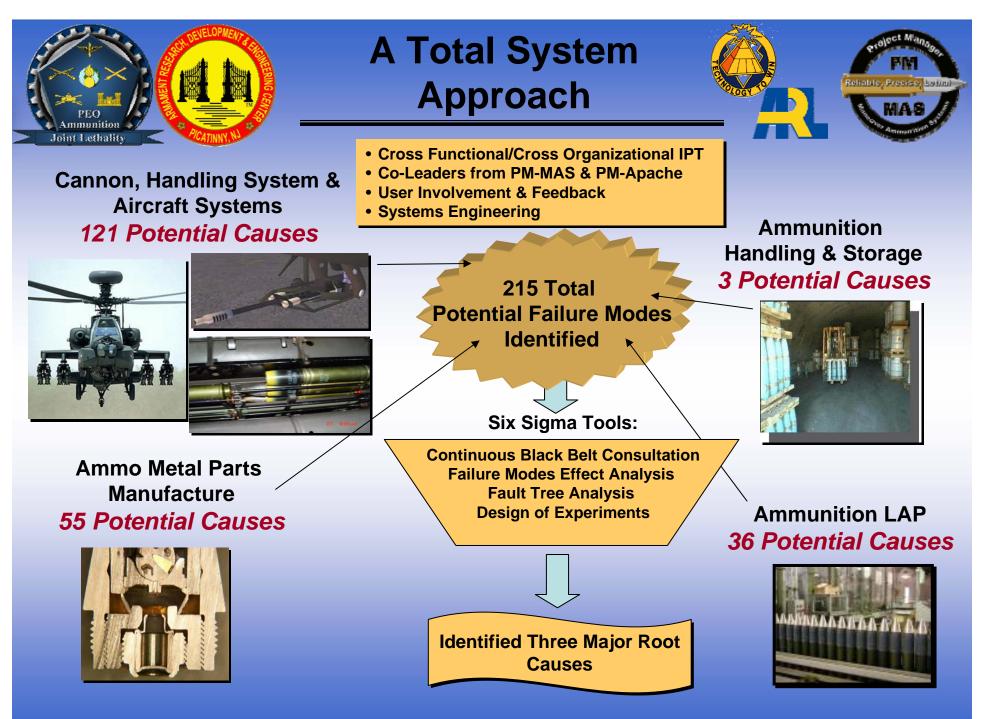
Extreme

Typical Damage Bullet on Bullet


2/101st

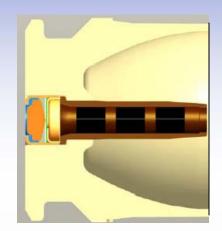
In-Bore/Hang-fire Investigation Team Participation

In-Bore/Hang-fire Investigation Team Encompasses Elements From Across Area Weapon System, and is a Total System Approach to Solving LW30mm Field Issues

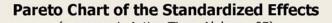

IHIT Methodology

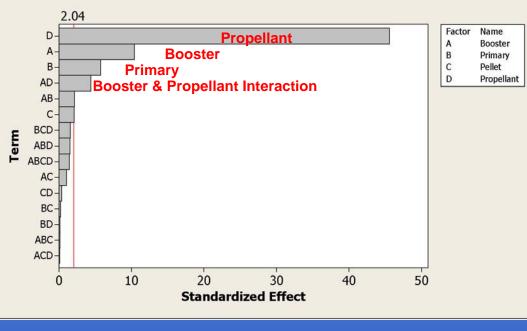
- Team Used A System Engineering And Six Sigma Approach
 - Interviews w/Field Units (Shooters, Ground Crews, Supply)
 - Re-work Previous Root Cause Analysis for Inbore Detonations
 - Use Failure Mode Effects Analysis (FMEA) Process
 - Collect Data (Modeling, Simulation, Testing) To Fill Data Gaps & Populate Fault Tree For Each Failure Mode
 - Conduct Design Of Experiments (DOE) And Verification Testing
 - Incorporate Changes Into TDP

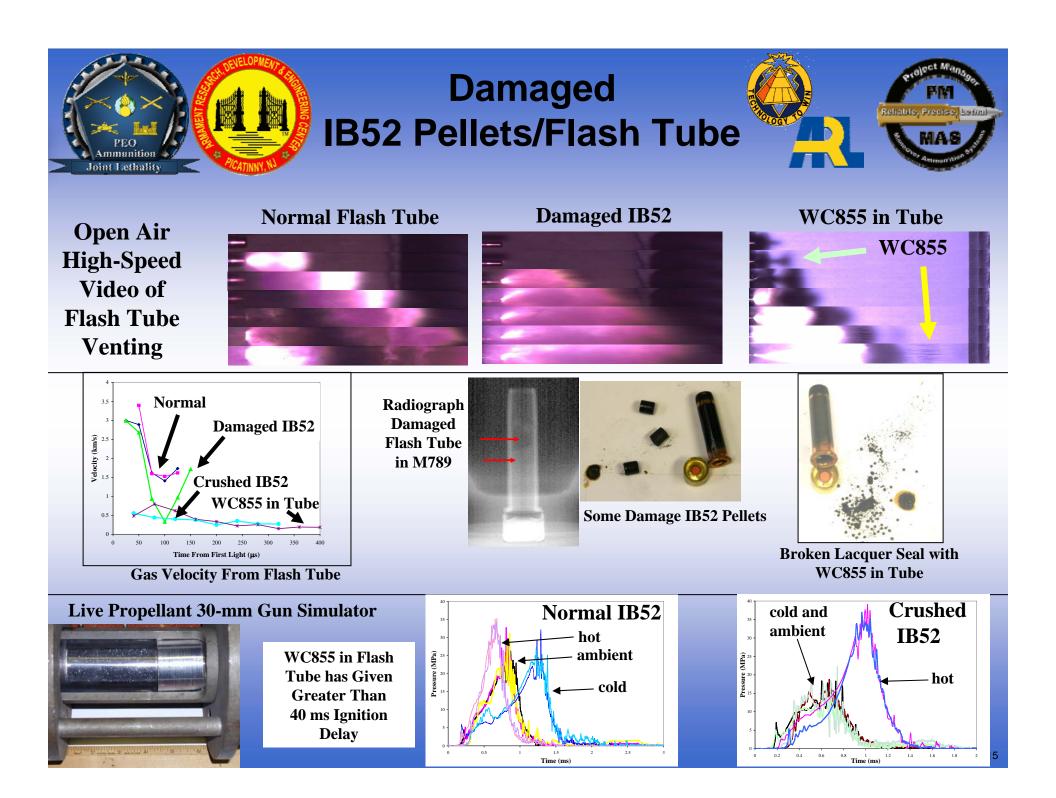
- No Incident Resulted from the 1st Round Fired
- Ammo Usually Stays in A/C Until Scheduled Phase Maintenance - Some Units Reloaded in Reverse Order of Download
- Manual Mode for Sideloader & Uploader/Downloader are Still Used Infrequently
- Feed System Jams While Uploading are Still Occurring Resulting in Punctured Cartridge Cases


Hangfire/High Pressure

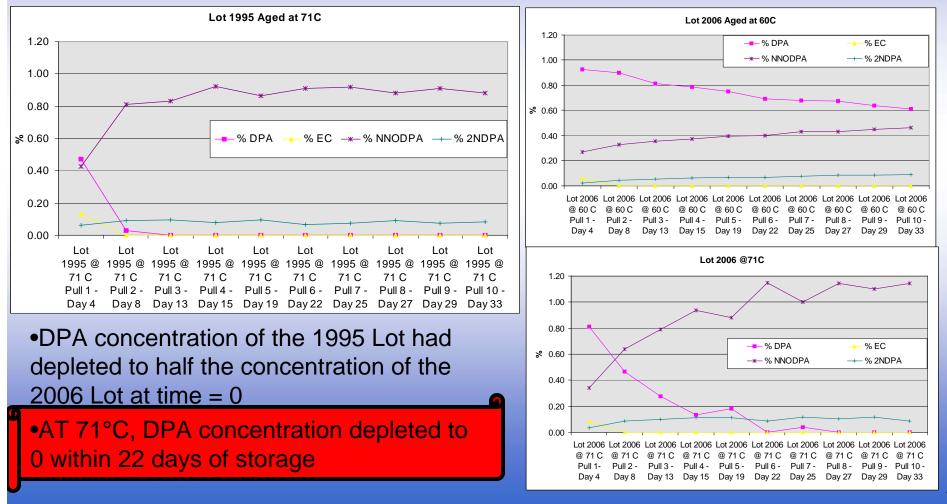
Ignition System DOE Phase I



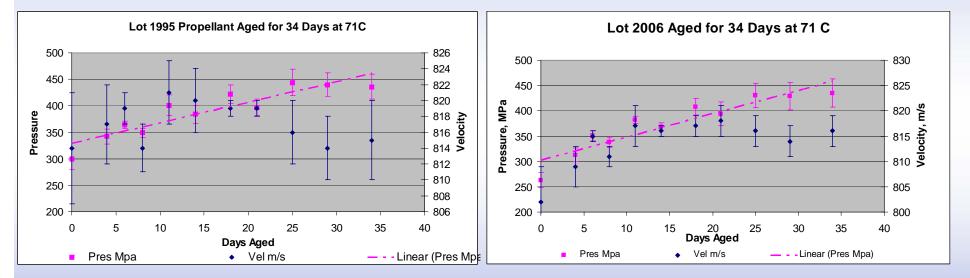

Control Factors	Level 1	Level 2	Level 3
Booster Mix	100%	50%	
Primary Charge	With	Without	
Flashtube Pellets	Pellet	Powder	
Propellant Level	100%	50%	25%



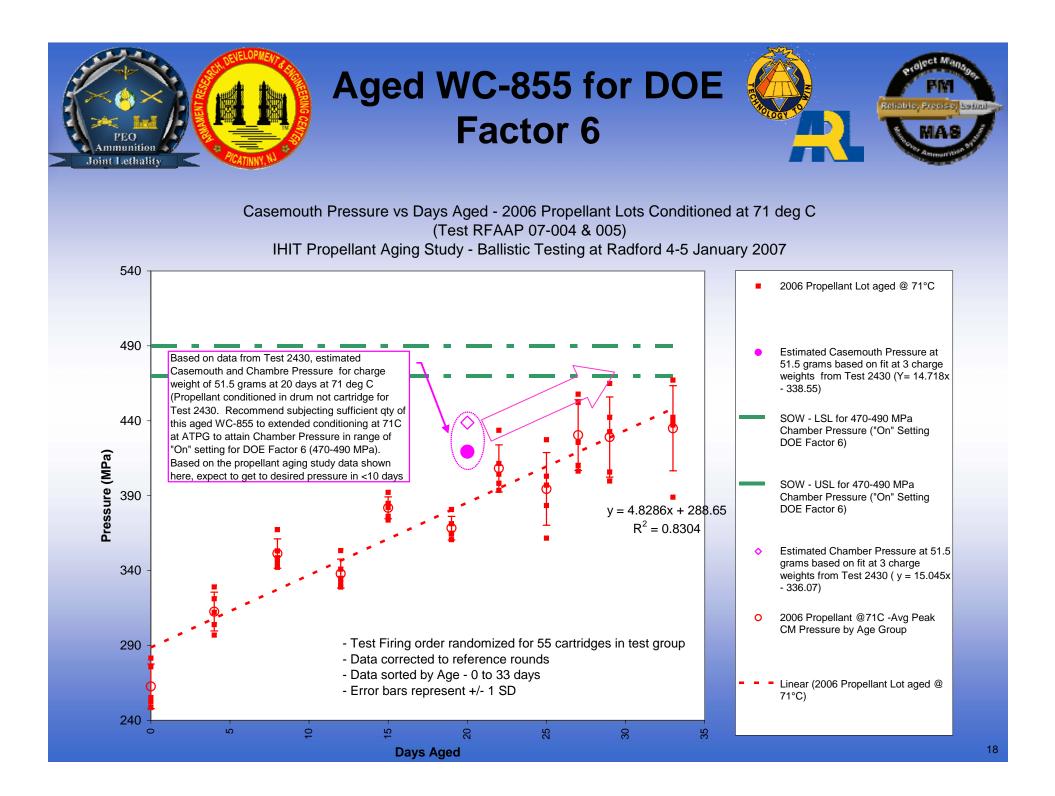
(response is Action Time, Alpha = .05)



Hot Temperature Storage Led to DPA Depletion



 Over time, the original stabilizer, DPA, depletes and converts to daughter products – 2NDPA, NNODPA; DPA reaction rate increases as temperature increases



•Within 10 days of aging a new propellant lot at 71°C, the measured pressure was in excess of the upper specification limit of 335 MPa

•Ballistic testing conducted at ambient. All data corrected with reference ammunition. Data is the average of 5 shots.

•Variation in pressure performance attributed to migration of DBP deterrent

Headspace DOE

Phase I Test Matrix

Firing Order of Rounds	No. of Rounds	High Pressure (approx 500 Mpa)	Nominal Pressure	Nominal Headspace	Headspace 0.025"	Headspace 0.031"	Hot Barrel (180°F)	Ambient Barrel
1	5		х	х				х
2	5	Х		Х				Х
3	5	Х			Х			Х
4	5	х				Х		Х
5	5		Х		Х		Х	
6	5		Х			Х	Х	
7	5	х			Х		Х	
8	5	Х				Х	Х	

Tested ok

Incident 2

Incident 1

Phase II Test Matrix

Firing Order of Rounds	No. of Rounds	High Pressure (approx 415 Mpa)	Nominal Headspace (.022")	Maximum Headspace (0.031")	Ambient Barrel
1	5	Х	Х		Х
2	5	х		Х	х

Headspace DOE

•Hangfire signature has been replicated without an actual hangfire event.

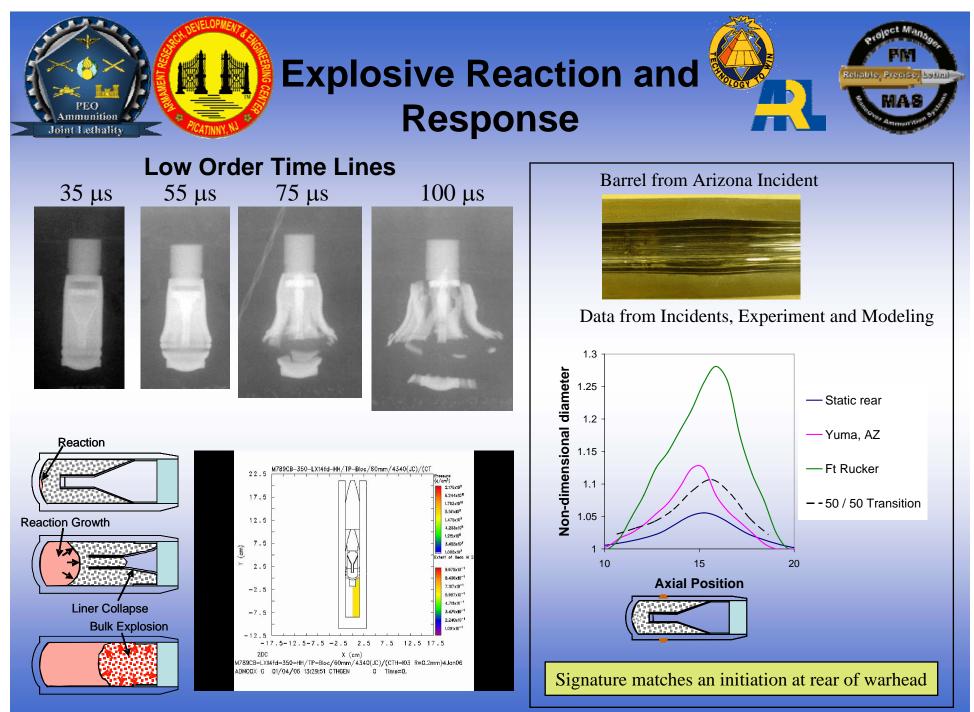
Excessive headspace Elevated pressure (~ 500 Mpa) Hot barrel

•Propellant gases vented from the chamber area can damage the operating group and receiver.

•Damage created similar to that seen in HE-Inbore events, except no barrel bulge and generally no Blast Suppressor damage.

Hangfire/High Pressure

- Most Likely Causes
 - Extended Vibration Damages Cartridge Ignition System (Replicated)
 - No Rounds Showed Physical Damage After 144 Hours
 - 30% Showed Some Damage After 192 Hours
 - Extended High Temperature Exposure Changes Propellant Characteristics (Replicated)
 - Significant Pressures Measured after 432 Hours @ 71° C (160° F)
 - Cartridge Cases are Punctured and Propellant is Lost or Contaminated (Replicated)


• Actions Taken to Date to Reduce/Eliminate Issues

- 1980s Production Placed into Condition Code 'N'
 - Removed to Strategic Reserve in Kuwait, Planned for Demilitarization When Stockpile has been Replenished
- Aviation Safety Action Message (ASAM) and AIN issued
 - Requires Download and Inspection of Ammo at Aircraft Regularly Scheduled Maintenance
 - Requires Rotation of Ammo When Reloaded into Aircraft to Minimize Prolonged Exposure to Vibration and Extreme Temperatures
- Initiated Design Improvement Program to Improve Robustness of the Ignition Train

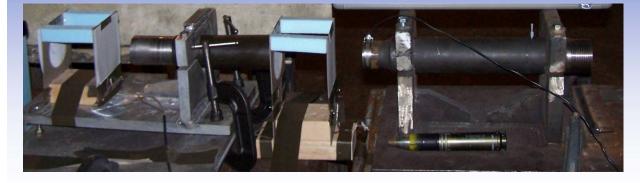

Inbore Detonation

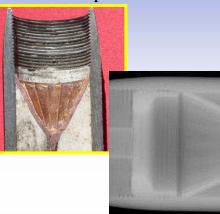
Dynamic Signature Replication Bullet-on-Bullet

Follow-on shot with solid fuze result was an in-bore with incorrect signature Violence and location reveal that bullet on bullet scenario not likely scenario for bulge... Tests conducted:

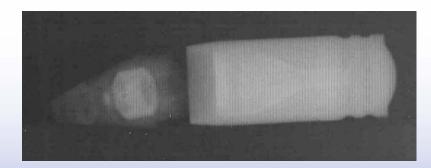
- HE round \rightarrow HE round (3 times)
- HE round \rightarrow HE round (dummy fuze)
- HE round \rightarrow TP round

Implies rear bullet initiation





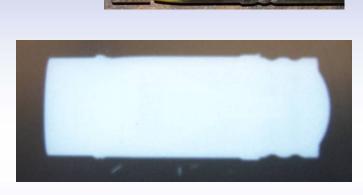
Dynamic Signature Replication Set Forward



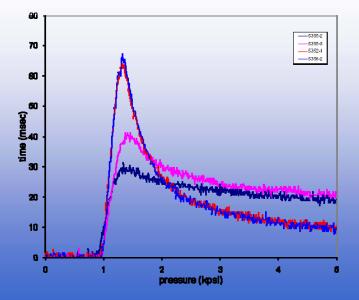
Exuded explosive in threads

Gap between retainer and liner

Result is g-load on order of 10^3 - 10^5 with no reaction of projectile (Fuze ripped off body)


Liner / Retainer gaps

- Gap > 0.032 in (from x-ray)
- Defuzed
- 8 shots, no in-bores


Fuzed

- No defects as determined from x-ray
- Standard, fuzed rounds
- 5 shots, no in-bores

Dynamic Signature Replication High Pressure (Body Failure)

2.00 x

Rationale

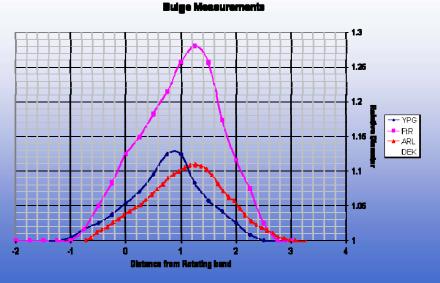
- Structural analysis found weak area in rear
- Bullet-on-bullet tests at APG:
 - 4 out of 4 shots went low order
 - Initiation from rear of projectile

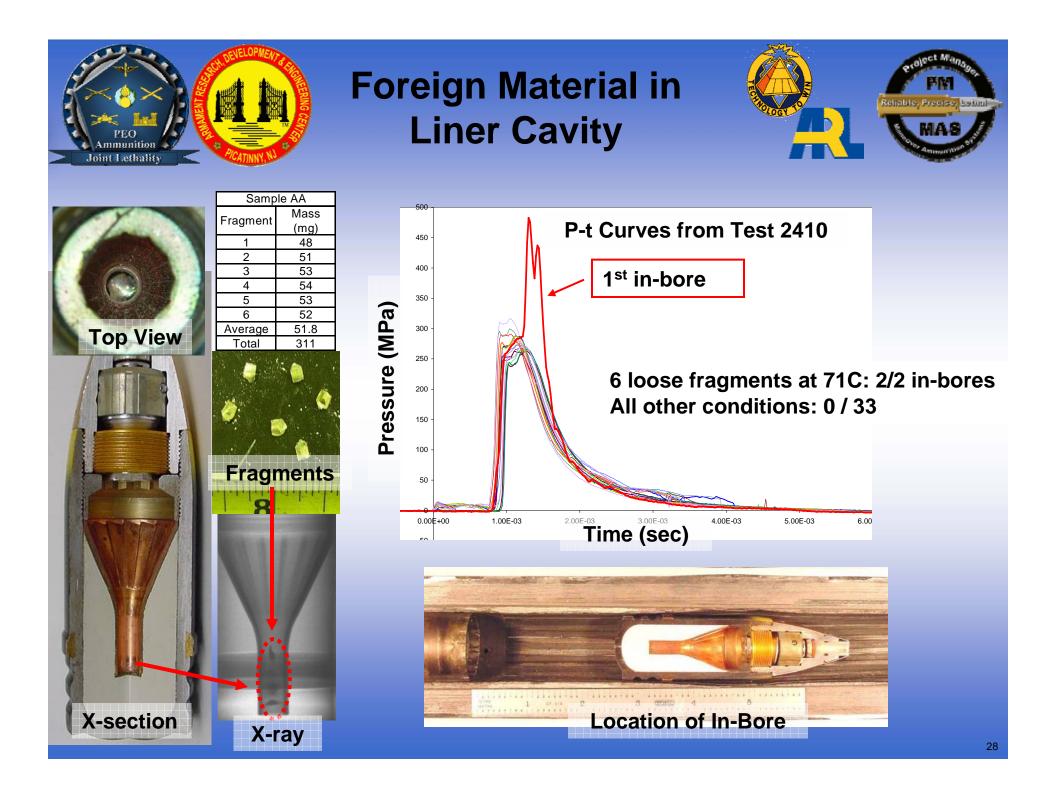
Procedure

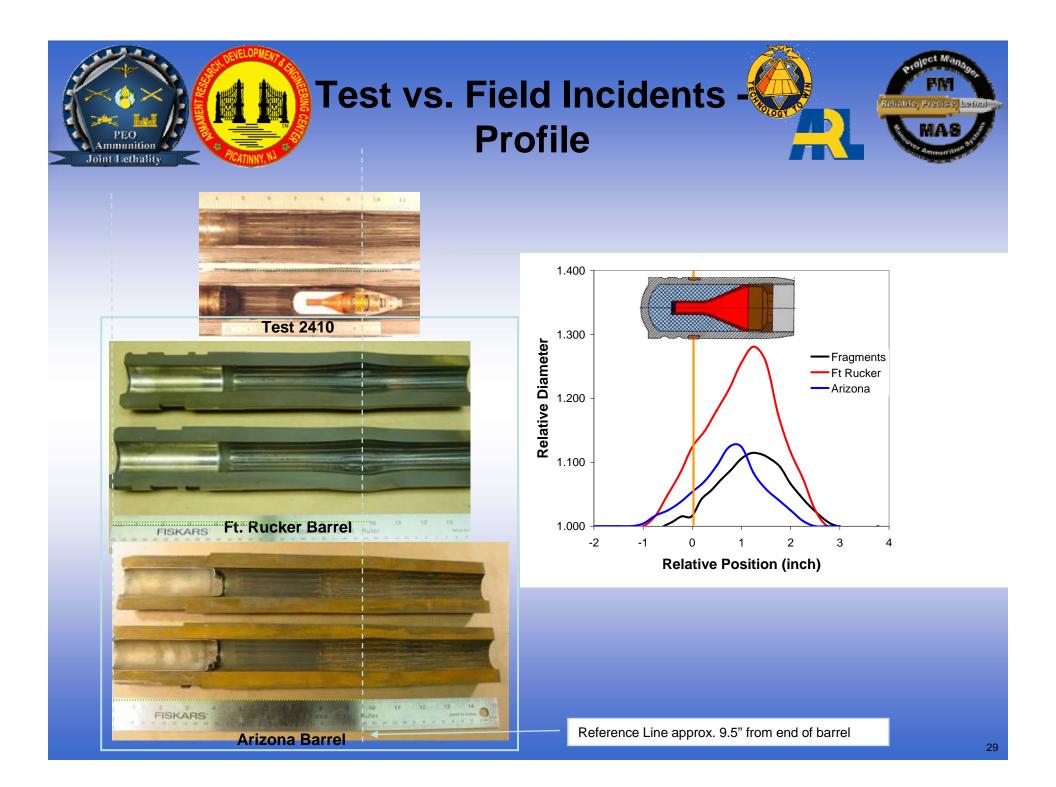
- Single projectile of increased mass
- Replace fuse with tungsten weight
- Provide data for fracture model

Mass taken to over double (2.25x) of projectile with subsequent increase of base pressure – NO initiation of explosive

Dynamic Signature Replication Foreign Material (aka Putty)

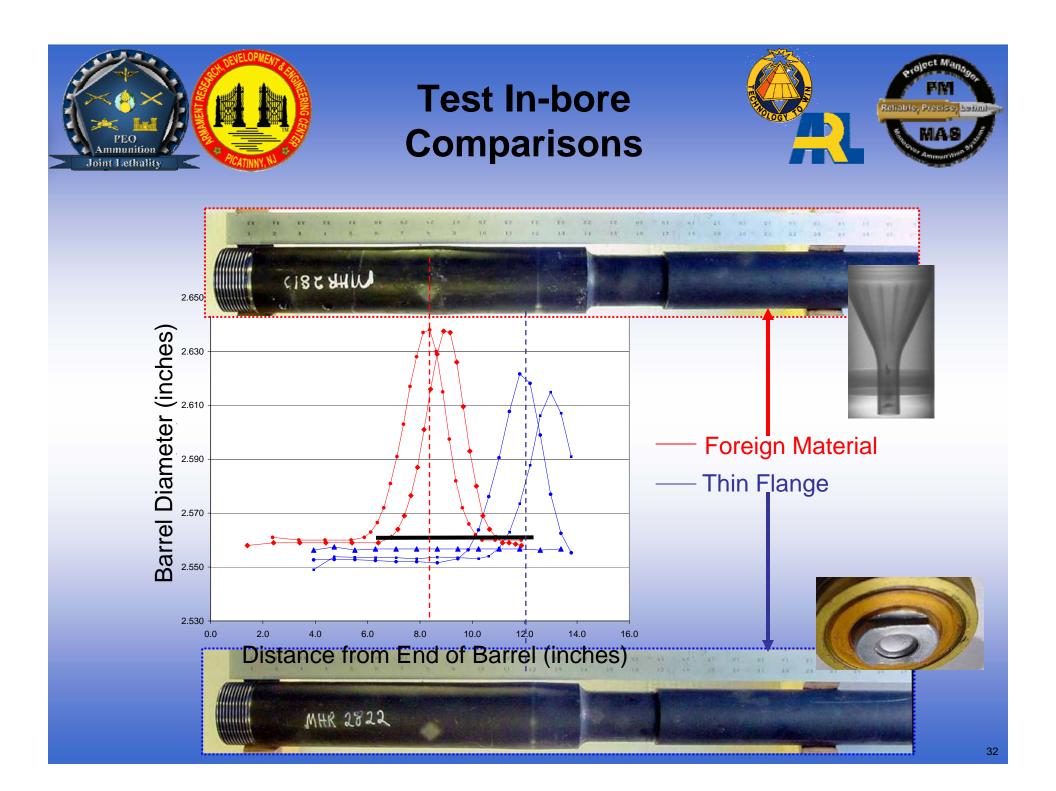

Shot 1

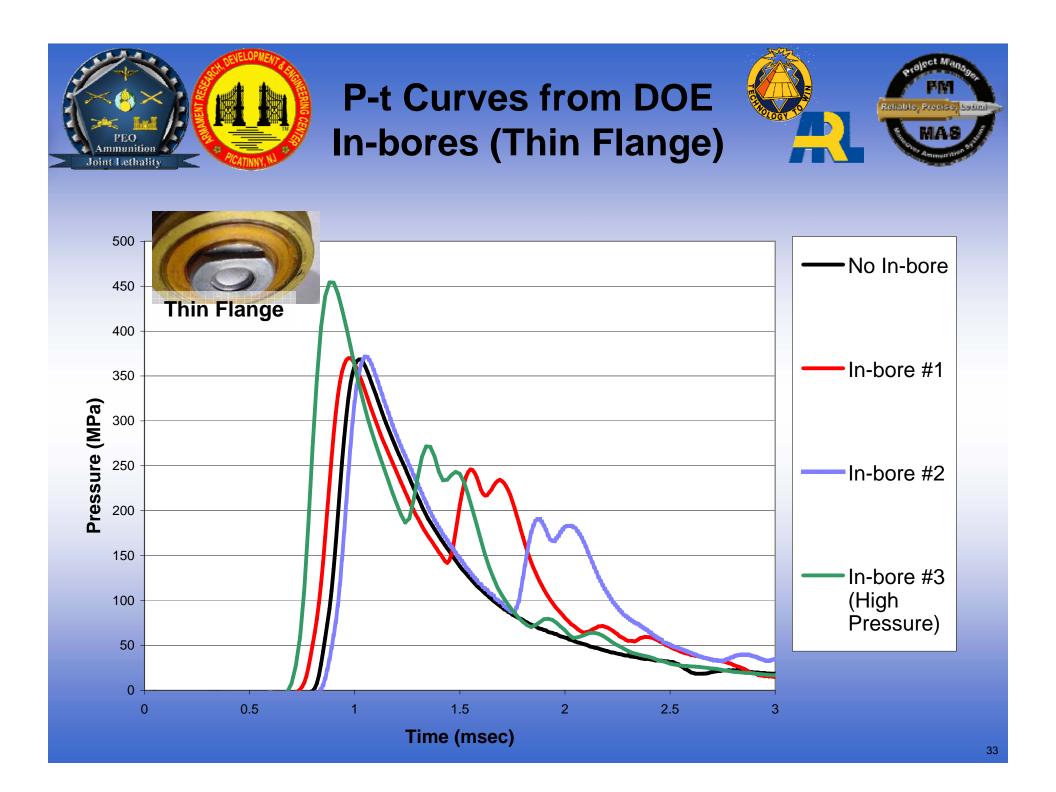



Bulged barrel centered at < 8 inches from breech

Dummy fuze replaces live fuze (with putty to match mass)

Fault Tree Probabilities for In-Bore DOE Factors


Block	Reliability	Prob. of Failure		Final Probability	Priority Ranking	
#504 Setback initiation due to debris in cavity	1	1.0005E-05	A1.11	1.0005E-05	, ,	In-bore demonstrated in Test 2410
#65 Thin sidewall body fails on setback	1	7.8400E-07	A1.12	7.8399E-07	1	Factor 4
#502 Particles embedded in HE cause HE to iniiate at setback	1	5.0000E-07	A1.15	4.9999E-07	2	Cu shaving test at High P in DOE SOW
Normal projectile ?	0.9914	9.9137E-01	A2.1	4.5107E-08	3	
#504 Setback initiation due to debris in cavity	0.9999	1.0000E-04	A2.11	1.6300E-09	4	
#1 Thin BCP flange fails on setback	1	1.1000E-09	A1.17	1.1000E-09	<mark>9</mark> 5	Factor 2
#307 Projectile Base deformed by propulsion gases	1	6.6700E-10	A1.9	6.6699E-10		Factor 3
#303 baseplug Vibrates loose	1	3.3400E-10	A1.2	3.3399E-10		Factor 1
#80 Cut Cartridge Case	1	1.0000E-10	A1.3	9.9998E-11		Factor 5
#502 Particles embedded in HE cause HE to initiate at setback	1	5.0000E-06	A2.15	8.1500E-11	9	
Improperly secured HE moves back and detonates at setback	1	2.0000E-11	A1.16	2.0000E-11		
#65 Thin sidewall body fails on setback PBXN-5 Develops cracks in storage #51	1	6.4000E-07 1.0001E-11	A2.12 C1.1	<u>1.0432E-11</u> 1.0001E-11	11	Factor 6 – Chamber
Voids in explosive pellet #52	1	1.000TE-TT	C1.1 C1.3	1.000TE-TT		
		1.0000E-11	01.5	1.0000E-11	13	Pressure G1 and G2
	11 (A A A A A A A A A A A A A A A A A A					
DOE Factor	- ?					
Special Purpose Test						
Redundant with a Prior Element Being Testing					1	
					LOOS	e Base Closing
		A1.1 Plug in Fuze				
In spec Ballistic Event	1.6345E-0		A1.1		Plua	in Fuze
#503 High pressure event	0.9227	1.63000E-05	A1.1 G2			
			A1.1 G2 G1	Í		
#503 High pressure event	0.9227	1.63000E-05				in Fuze tor 1)
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				
#503 High pressure event	0.9227	1.63000E-05				tor 1)
#503 High pressure event	0.9227	1.63000E-05				tor 1) Thin Flange on Fuze
#503 High pressure event	0.9227	1.63000E-05				tor 1) Thin Flange on Fuze
#503 High pressure event #503 Maximum pressure event	0.9227	1.63000E-05	G1		(Fac	tor 1) Thin Flange on Fuze Base Closing Plug
#503 High pressure event #503 Maximum pressure event	0.9227	1.63000E-05	G1	hin Sidewall	(Fac	tor 1) Thin Flange on Fuze
#503 High pressure event #503 Maximum pressure event	0.9227 0.9985	1.63000E-05 4.55000E-08			(Fac due to	tor 1) Thin Flange on Fuze Base Closing Plug (Factor 2)
#503 High pressure event #503 Maximum pressure event	0.9227	1.63000E-05 4.55000E-08		hin Sidewall ccentric Cav	(Fac due to	tor 1) Thin Flange on Fuze Base Closing Plug (Factor 2)
#503 High pressure event #503 Maximum pressure event	0.9227 0.9985	1.63000E-05 4.55000E-08		ccentric Cav	(Fac (Fac due to ity at Crin	tor 1) Thin Flange on Fuze Base Closing Plug (Factor 2)
#503 High pressure event #503 Maximum pressure event	0.9227 0.9985	1.63000E-05 4.55000E-08			(Fac (Fac due to ity at Crin	tor 1) Thin Flange on Fuze Base Closing Plug (Factor 2)



Main In-bore DOE

Factor	Example of "On" Factor		Example of "	Test Results			
	Sell	Setting		ing	Shots "on"	In-bores	
Loose BCP		~1/2 Thread Engagement		Full Thread Engagement	80	0	
Thin BCP Flange		~ .015" Flange Thickness		~ .044" Flange Thickness	5	3	
Thin Dome		~.05" Dome Thickness		~.125" Dome Thickness	80	0	
Eccentric Cavity		Max Eccentricty (~.020")		Nominal Eccentricty (~.008")	80	0	
Cut Cart. Case		 Cut through case to proj. body 		No Cut	80	0	
High Pressure	20 days aged WC-855	~405 MPa Chamber	30 days aged WC-855	~480 MPa Chamber	81*	1	
* 1 shot included thin BCP Flange							

Inbore Detonation

Most Likely Causes

- Foreign Material from Manufacturing Process in Liner Cavity (Replicated)
- Thin Flange/Spitback Crimp (Replicated)
- Actions Taken to Date to Reduce/Eliminate Issue
 - -1980s Production Placed into Condition Code 'N'
 - Removed to Strategic Reserve in Kuwait Planned for Demilitarization When Stockpile has been Replenished
 - -1990+ Production
 - Thin Flange on Base Closing Plug Identified as a Critical Defect
 - Additional Testing Added to Verify Design Margin
 - Double Automated Inspections Added to Manufacturing Line
 - Affected Lots (Prior Inbore Detonations) Restricted from Use Until Screened
 - X-Ray Screening to Remove Defective Rounds Being Initiated
 - Manufacturing Process has been Modified to Eliminate Source of Foreign Material

–AIN & ASAM Issued to Minimize Ammo Exposure to Extreme Temperatures

Bullet on Bullet

Bullet on Bullet

A loss of propellant due to punctured case caused:

- 1 Increased Action Time (5 to 24 ms)
- 2 Decreased Range
- 3 Projectiles stuck beyond origin of rifling at ~15% propellant load
- 4 Projectiles stuck at origin of rifling or failed to debullet at 5-10% propellant load.

Bullet on Bullet

- Most Likely Causes
 - **X** Cartridge Cases are Punctured and Propellant is Lost
 - Efficiency Loss to a Level of 10-15% (Replicated)
- Actions Taken to Reduce/Eliminate Issue
 - ASAM #AH-64-07-ASAM-13 Issued
 - Emphasizes Use of "Auto" Mode for D Model Apache Sideloader which Minimizes Risk of Creating and Firing Punctured Cases
 - Requires Download and Inspection of Ammunition at Aircraft Regularly Scheduled Maintenance
 - Re-emphasizes the Need for Caution Uploading/Downloading the Aircraft to Avoid Punctured Cartridge Cases

Summary

- Investigation is Completed
- Final Reports are Being Written for Individual as well as Combined Efforts
- Investigation Results are Being Formulated into:
 - Design Changes
 - Manufacturing Process Changes
 - Stockpile, Manual and/or Procedural Changes, as Applicable