

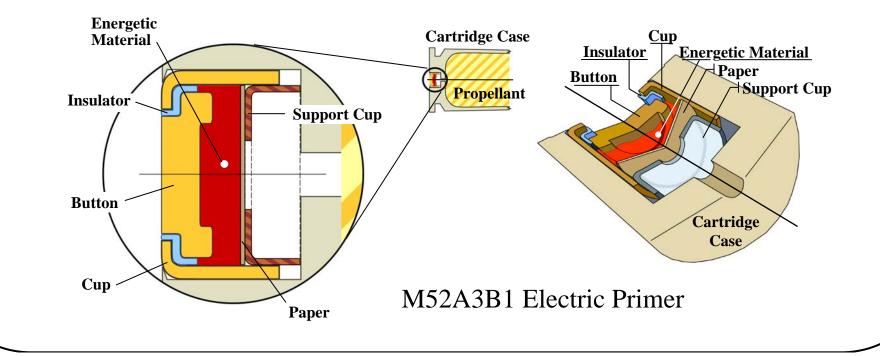
Lead Free Electric Primers

(Project Number 1331)

2007 NDIA Gun and Missile Systems Conference and Exhibition

Sarah A. Ford

23 April – 26 April


Approved for public release; distribution is unlimited

PROGRAM OBJECTIVE

The Objective of the SERDP Lead-Free Electric Primer (LFEP) Program is to Demonstrate the Feasibility of Substituting Metastable Interstitial Composite (MIC) Materials for the Lead Styphnate . . . Leading to the Development of a Safe, Reliable & Effective Lead Free Electric Primer (LFEP) for Use in Medium Caliber Ammunition

BACKGROUND / NEED

<u>Electrically Initiated Ammunition In-Service:</u>
20mm Ammunition

USN / USMC / USAF / NATO / FMS
Historically Over 1 Million Rounds per Year
(Peace Time Records)

30mm Ammunition – USA
Annual Production / Utilization

Lead Styphnate – 1700 Pounds
Barium Nitrate – 2000 Pounds

Environmental / Health Hazards Well Known / Documented

TECHNICAL APPROACH

Chemistry Focus

Material Characterization Optimal Fuel/Oxidizer Ratio (Heat Treated MoO₃) Material Mixing Processes - Solvent, Performance Environmental Issues (Nano Particulate By-Products)

Primer Reliability

Material Instability Stability of MIC/Oxidizer + Additives MIC Primer Fabrication Wet-Loading/Consolidation Process Aging

TECHNICAL APPROACH

Safety Issues

Primer Mixing Formulation and Processing Hazards HBSES, ESD, BAM

Production Line 'Desensitization'

Manufacturing / Producibility Issues

Scalability

Safety

Cost

Reliability / Reproducibility

TECHNICAL APPROACH

All-Up Round Performance

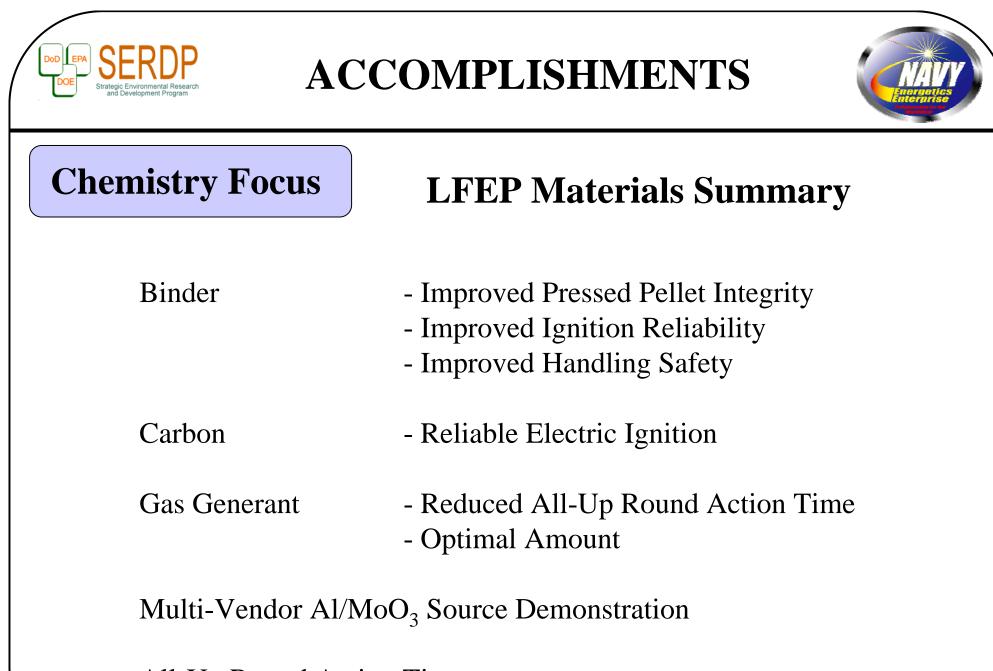
Primer Composite Aluminum - Particle Size (Nano) Oxidizer - MoO_3 , Bi_2O_3 Mixing Process - Sonification Additives - Carbon/Binder/Gas Generator Reproducibility **MIC** Materials Mixing Conditions Composition **Consolidation Process**

Chemistry Focus

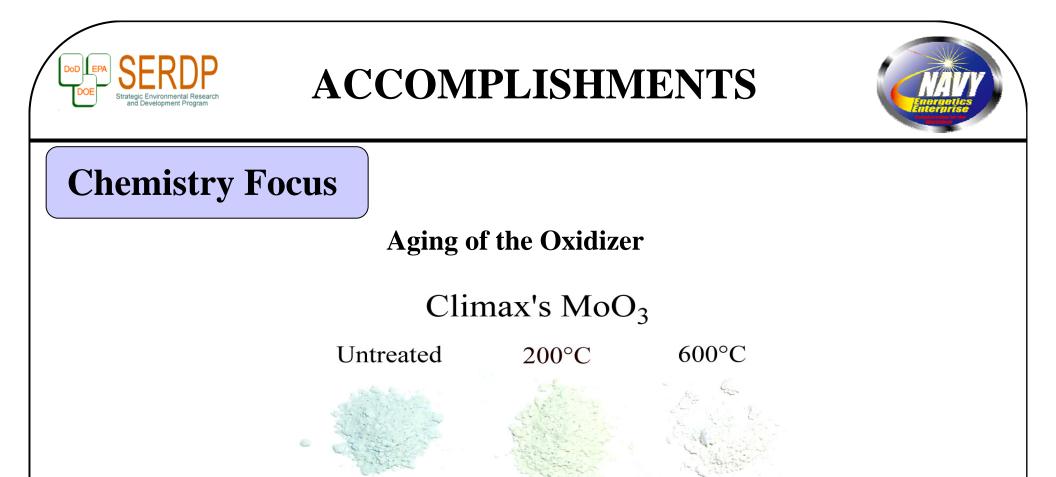
Nanocomposite Ingredients

Aluminum Powder

Technanogy Technanogy Nanotechnology China Lake


<u>Molybdenum Trioxide</u> Climax Aldrich

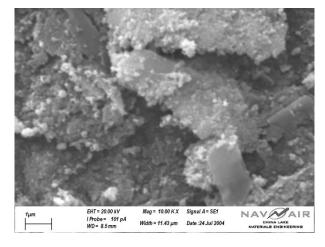
<u>Bismuth Oxide</u> Aldrich Skylighter Sigma-Aldrich

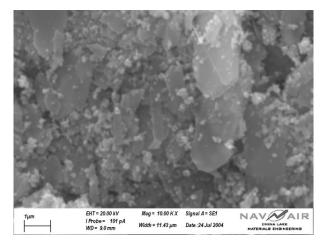

Active Al
48.8% (TGA @CL)
64.8% (TGA @CL)
82.7% (TGA @CL)
86.0% (TGA @CL)

Size 40 nm (BET @CL) 1.6 μm (BET @CL)

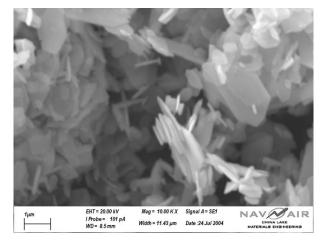
<u>Size</u> 320 nm (BET @ CL) 1-3 μm (BET @ LANL) < 10 μm

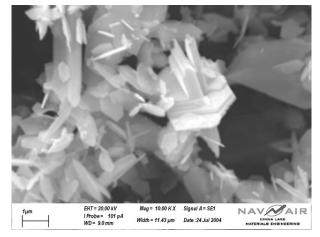
All-Up Round Action Times Technanogy, NSWCIH, NAWCWD


An obvious change occurs in the "as received" MoO_3 from the manufacturer, Climax. Freshly prepared samples of MoO_3 are white and have large surface areas (~ 45 m²/g) as measured by BET. However, exposure to air over time results in a significant decrease in surface area (~ 20 m²/g) and leads to a lime green coloration.



Chemistry Focus


Heat Treatment of MoO₃


Untreated MoO₃ After 24 Days in Air

MoO₃ Heated to 400°C for 15 Minutes

MoO₃ Heated to 500°C for 15 Minutes

MoO₃ Heated to 400°C for 180 Minutes

Chemistry Focus

Heat Treatment of MoO₃

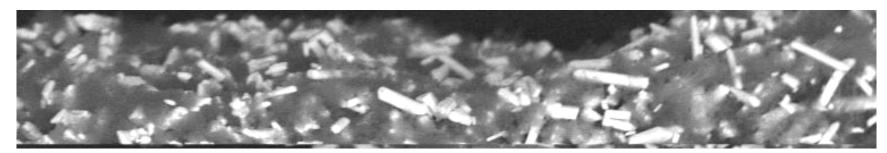
	Heat Treat Temperature							
	400 Degrees Centigrade		443 Degrees	Centigrade	500 Degrees Centigrade			
Time (Minutes)	Morphology	Size (nm)	Morphology	Size (nm)	Morphology	Size (nm)		
15					Orth (100%)	220		
22			Orth (100%)					
30	Mono / Ortho				Orth (100%)			
60	Mono / Ortho							
120	Orth (100%)							
180	Orth (100%)	198			Orth (100%)			

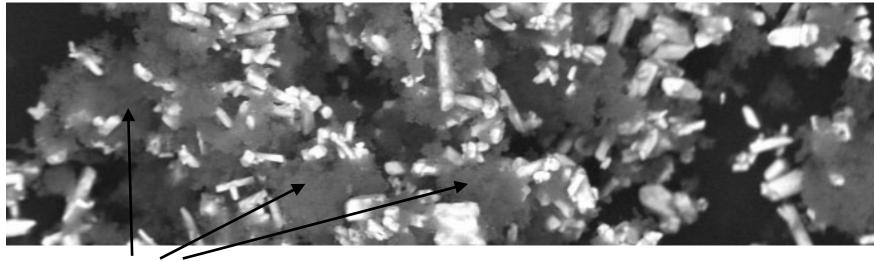
MoO₃ Heat Treatment Study Analysis

- Determine Optimal Time and Temperature for Conversion
 - ✓ Total Orthorhombic Phase Conversion
 - ✓ Minimal Particle Size Growth
- X-Ray Diffraction To Determine Material Phase
- SEM To Determine Particle Size and Morphology

Chemistry Focus

Ultrasonic Mixing


Determine Aging vs Different Mix Processes Dry Mixing – Mechanical Shaker for 2 Minutes Ultrasonic Bath Sonicate Al/MoO₃ for 15 Minutes Sonicate Mixture for 1 Hour Ultrasonic Horn (100W, 400W) Sonicate Mixture for 0.5 to 2 min. Mixing Process Monitoring TGA of MIC



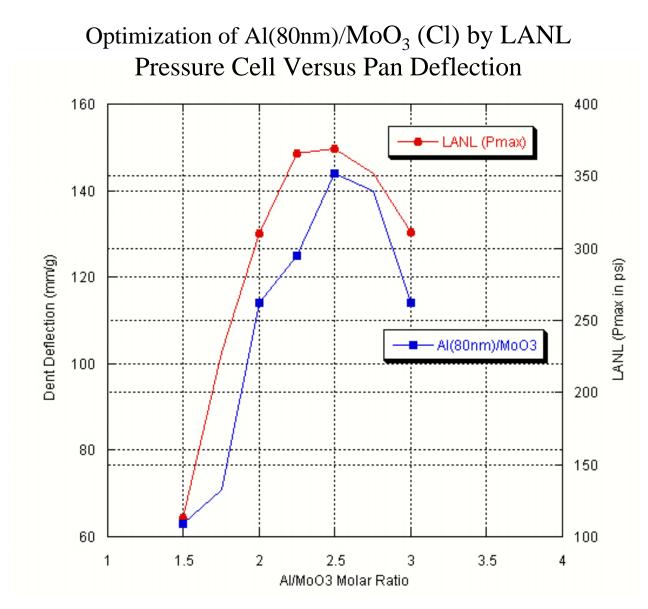
Chemistry Focus

Solvent Effect in Mixing Hexane Versus i-PrOH

Hexane

Chemistry Focus

400W Sonic Mixing 75% Amplitude 0.5s pulse, 1 min.


	Molybdenum Trioxide MoO ₃					
Aluminum	(Climax 40 nm Aldrich 1.6 mm			mm	
Powder	Hexane	i-PrOH		Hexane	i-PrOH	
Al (35 nm)	Good					
Al (50 nm)	Good			Good		
Al (80 nm)	Good			Good		
	Bismuth Trioxide Bi ₂ O ₃					
Aluminum	Aldrich 320 nm		Skylighter 1-3 mm		Sigma-Aldrich < 10 mm	
Powder	Hexane	i-PrOH	Hexane	i-PrOH	Hexane	i-PrOH
Al (35 nm)				Poor		
Al (50 nm)	Good	Poor		Poor	Good	Very Poor
Al (80 nm)	Good	Poor	Very Good	Good	Good	
Al (208 nm)					Good	
A1 (5 mm)	Good					

Poor – Material Separation (Al from Oxidizer) Was Observed

Good – Little or No Material Separation

Very Good – No Material Separation, Rapid Precipitation, Easy Isolation (Filtration)

Optimization results were similar for both methods. Optimal performance achieved at a 2.5 Al/MoO₃ ratio. Best performance for fuel rich composites.

$$2 \text{ Al} + \text{MoO}_3 \rightarrow \text{Al}_2\text{O}_3 + \text{Mo}$$

Stoichiometric at 2:1

Pan Deflection Test is a rapid screening tool for MIC performance

ACCOMPLISHMENTS

MIC Performance Testing As Measured By Al Pan Dent Deflection **MIC Optimization** 140 – Al(50nm)/MoO3 in Hexane Al(50nm)/MoO3 in FC-77 120 Pan Deflection (mm/g of MIC) 100 80 60 40 20 1.5 3.5 2 2.5 3 1 4 Al/MoO3 Molar Ratio

Al(50 nm)/MoO₃(44nm) 400 W Ultrasonic Horn 2 minute @ 75% Ampl Pulse Length = 0.5 sec

Performance using FC-77 as a solvent exceeds hexane by > 20%

Cause under investigation

Safety Status:

Standard Handling Safety Tests Completed

MIC/BTATZ/Kel-F/C Composition Has Reduced Sensitivity

ESD/Friction/Impact Effects Moderated Formulation by Kel-F Binder

Conduct Safety Tests on Altered Primer Formulation

Al/Bi₂O₃/BTATZ/Kel-F/C Composition

Determine if Mix Sensitivity Moderated by Kel-F Binder

Develop Formulation Process – Reduce Hazardous Operation

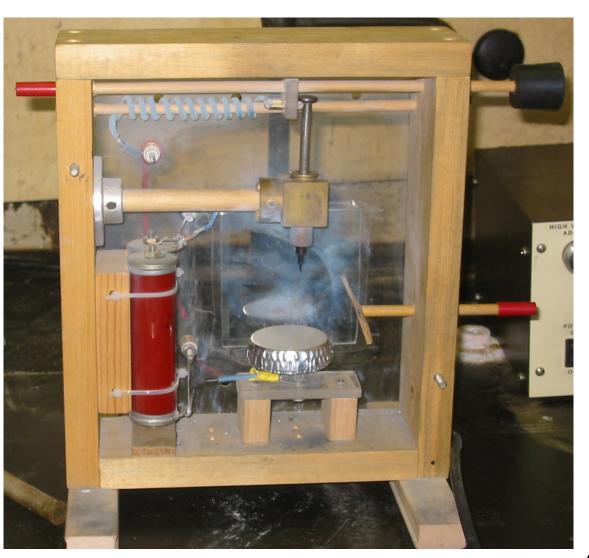
Focus on Handling, Processing and Desensitization

Safety Status:

Handling and Safety Concerns

- Issue: ESD and friction sensitivity of MIC materials, particularly Bi_2O_3 , has raised concerns in handling safety
- Approach: Utilize safety tests for ESD and friction that are sensitive enough to rank primer formulations for handling.
 - Establish "wet" loading procedures that minimize handling and reduce sensitivity during processing.

Safety Status:


<u>Electrostatic Discharge</u> (ESD) Sensitivity

Power Supply = 0-5KV

Capacitance = Variable $0.02, 0.04, 0.22 \mu F$

Energy Range = 2.75 to < 0.001 Joules

Variable Electrode Gap

Safety Status:

Friction Sensitivity Data Al Composites

Mixture	6/6 NF @	Low Fire Point	Sample Size	Notes
PETN	42N		~35mg	Burn Mark and NOx Generation
M-52 Primer Mix	4N		~2 mg	Moderate snap, spark
AI(80)/Moly/BTATZ/KeIF	9N		~2 mg	Moderate snap, spark
AI(80)/Moly/KeIF		0.05N	~2 mg	Extremely loud snap, spark
AI(80)/Moly		0.05N	~2 mg	Extremely loud snap, spark
AI(80)/BiO		0.05N	~2 mg	Extremely loud snap, spark
AI(80)/AgIO3/KeIF		0.05N	~2 mg	Extremely loud snap, spark
AI(80)/AgIO3		0.05N	~2 mg	Extremely loud snap, spark

BAM Friction Tester

Relative friction sensitivity of energetic materials generated by mechanically rubbing between roughened surfaces

Range = 0.05N to 10N on small BAM 5.0N to 360N on standard BAM

Primer Reliability

Chemical Instability Stability of MIC (Al/MoO₃) Material Aging (H₂O) – atmospheric, chemical, contamination

MIC Mixing Process – Ultrasonic Mixing

Loading and Pressing Density Electrical Properties (C) Physical Integrity (Binder)

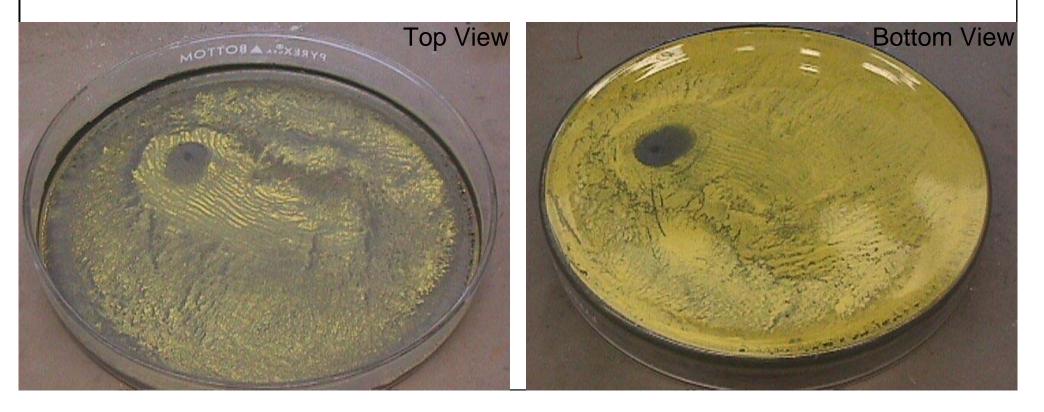
Primer Reliability

Loading Procedures

Both LFEP Loading Procedures Utilize MIC Pastes that are Loaded and Pre-Consolidated (Incrementally), Dried and Given Final Consolidation After Drying

> Solvent-Based Primer Loading Process MIC Formulation and Hexane (1:1 by weight) Water-Based Primer Loading Process Nano Al Treated with Methyltrichlorosilane Heat Treatment of the MoO₃

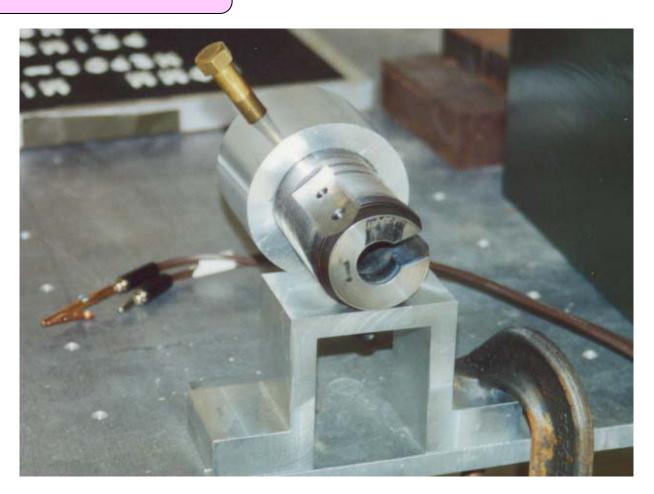
Issue - Treatment of MIC Materials to Enhance Handling Safety May Adversely Affect Primer Performance



KAVY HIEFERISS

AI and $NH_4H_2PO_4$ in 10 ml of H_2O sonicated for 30 s Bi₂O₃ and Gum Arabic in 15 ml of H_2O sonicated for 30 s 2 Components mixed and sonicated for 1 minute Transferred into an Petri dish and air dried.

Result: Separation of AI and Bi₂O₃ during drying process

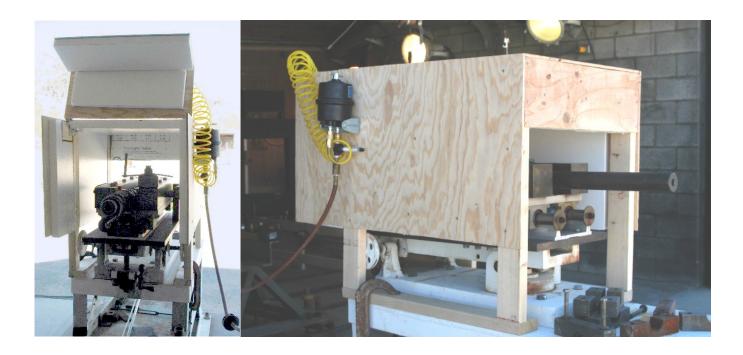

Conclusion: Phase separation will lead to highly variable primer performance

All-Up Round (AUR)

Primer Electrical Resistance Measurement & Test Firing Fixture

All-Up Round (AUR)

- Issue: Primer performance may vary depending on environmental conditions found in storage and operation.
- Approach: Promising primer formulations are verified by loading in AUR's and conducting PVAT testing at ambient and cold temperatures that would be most detrimental to performance.



All-Up Round (AUR)

Cold Temp Test Setup

Cold Temp AUR Test Conditions

- •All Rounds Cold Conditioned
- •Liquid Nitrogen Used To Cool Breech and Barrel within Shroud
- •Dry Air Used to Remove Moisture around Breech

All-Up Round (AUR)

Formulation Identity	Firing Test Date	Initial Temperature (°F) of Primer	Primer Test Temperature (°F)	Action Time (msec)	Chamber Pressure (ksi)	Velocity (fps)
KTHU-22	2 Mar 05	Ambient	Ambient	Within Spec	Within Spec	Within Spec
KTHU-22	4 Apr 05	Ambient	Ambient	Within Spec	Within Spec	Within Spec
KTHU-47	23 Jun 05	Ambient	Ambient	Within Spec	Within Spec	Within Spec
KTHU-53	23 Jun 05	Ambient	Ambient	Within Spec	Within Spec	Within Spec
KTHU-57	27 Sept 05	Ambient	Ambient	Within Spec	Within Spec	Within Spec
KTHU-22	20 Oct 05	Cold Temperatures	Cold Temperatures	Within Spec	Within Spec	Within Spec
KTHW-24	24 Oct 05	Cold Temperatures	Cold Temperaures	Exceed Spec	Within Spec	Within Spec

Manufacturing/Producibility:

Coordinated efforts with the Army's ammunition procurement office, Joint Munitions Command, and the Navy's medium caliber ammunition program office, PMA-242, to begin the technology transition process.

> Scalability Handling Safety Cost Reliability/Reproducibility

PARTNERING

- MIC Joint Service Working Group-Government Los Alamos National Laboratory Lawrence Livermore National Laboratory Sandia National Laboratory Eglin Air Force Base NAWCWD-China Lake NSWC-Indian Head
- MIC Joint Service Working Group-Industry GDOTS Canada Inc ATK Novacentrix

TRANSITION PLAN

Following Successful Development & Demonstration of a Medium Caliber LFEP the Navy, & Likely the Army, will Pursue the Follow-On Development, Qualification & Production of Environmentally Favorable Primers for Military Ammo Applications.

ESTCP began FY07 and partnering with: Primer and Ammunition Manufacturers-Lake City Ammunition and Armament Plant and GDOTS Canada Inc. Materials Manufacturers-Novacentrix

Production and handling studies will be the focus of the first year of ESTCP. Investigators will work with industry to ensure a cost effective, viable production method for mass production of Lead-Free Electric Primers.

The qualification process will include industry buy in and Low Rate Initial Production. The LRIP lot will be thoroughly evaluated.

Questions?