

Presentation to 42nd Annual Gun and Missiles Conference

Trade Space on Appropriate Caliber Ammunition for Terminal Defense Guided Projectile

Advanced Programs Chris E Geswender <u>cegeswender@raytheon.com</u> Andrew Hinsdale <u>Andrew_j_hinsdale@raytheon.com</u>

April 23, 2007

Copyright © 2007 Raytheon Company. All rights reserved.

Traditional Threats

- Large capital platforms
- Large, highly capable weapons
- Low engagement rates
- Relatively long reaction times
- Usually engaged by a large, high performance missile
- Gunfire used only as last ditch defense against "leakers"
- "Cost Effectiveness" equation based on cost to kill ~ cost of threat

Main Defensive weapons designed against these threats

New Asymmetric Platform Threats

- With loss of "active" peer threats, lower capability countries dominant threat
- Weapons used by these countries are usually militarized commercial products
- GPS or GPS/INS permits easy weaponization of UAV or USV platforms
- Terrorists can also use same technology as effectively as the U.S.
- Threats likely to employ multiple units and surprise to ensure mission success with low reaction times
- Guns are appropriate as primary engagement weapon
- "Cost Effectiveness" equation requires cost to kill ~ "political" cost of failure

Newer threats, secondary weapons being designed to handle

New Non-Traditional Threats

- New generation of low volume, GPS or SAL guidance applied to unguided munitions
- These weapons will result in simultaneous attacks in large numbers
- Low reaction times due to short ranges and large numbers
- Gunfire only practical means to respond to these threats in high engagement rates
- Target "hardness" ranges from hard to very hard, a major technical challenge

- Equally available to terrorists and even the smallest of nation states
- "Cost Effectiveness" equation should be cost per kill ~ "political" cost of failure

A new problem, requiring new solutions

Not All Functions Drive Trade Space

Function	Projectile Caliber Influence	Comments
Detection	Weak	Primarily a function of the search sensor
Classification	Weak	Determines if signal represents a threat
Engagement Planning	Strong	Determines order of engagement, how many projectiles per target to fire (projectile lethality used in calculations)
Fire Control System (FCS)	Weak	Coordinates target state, sensor pointing and gun pointing to begin engagement
Weapon Initialization	Medium	Smaller calibers cannot be guided but would have smart- fuzing larger calibers that may require additional states to support guidance
Weapon Deployment	Strong	Gun carriage and auto-loader characteristics strongly determined by caliber of projectile fired
Weapon Control System (WCS)	Medium	Smaller caliber may have fuze aiding and larger caliber may require additional transmitted states for guidance (lethal radius influences accuracy required)
Terminal Effects	Strong	Caliber size determines both lethal radius and per-shot- lethality of projectile

Projectile, gun, and fire control must be solved holistically

Newest Threats are Hardest to Defeat

- Small radar cross section
- Very hard shell body
- Small vulnerable area
- Small reaction times
- Likely to have large number of simultaneous threats
- Requires K-kill to not revisit (soft kill is a dud but not known until impact)

These threats drive the requirements for a self defense projectile

Side by Side Analysis

Caliber	US DoD	Other	In Production		
20 mm	USAF	Aircraft Guns	Yes		
		Vulcan ADU			
25 mm	M2A1 Bushmaster		Yes		
30 mm	USAF, USM	FRG-ABM	Yes		
35 mm	N/A	Skyguard	Yes		
40 mm	USAF	BOFORS	Yes		
57 mm	USN LCS, DDX	BOFORS	Yes		
60 mm	N/A	X-WP	No		
76 mm	USN FFG, USCG	NATO FFG	Yes		
90 mm	N/A	Unknown	Yes		

Selection is available from a large range of operational calibers

Combat Proven Answer to New and Non-Traditional Threats

Raytheon Missile Systems

- Exists and fielded
- Proven lethality
- Low per engagement cost
- RF primary sensor IIR capability
- Engages low elevation targets
- Engages high elevation targets
- Multiple projectiles
 - HE
 - Incendiary
 - Tracer
 - Self destruct
- Support leveraged by large installed base

http://www.raytheon.com/products

Test and combat video available at *http://www.videotiger.com/vids/amazingmilitarydefensiveweapon.wmv*

Scale UAV

Personal Watercraft

Surface Mine

Small Boat Threat

Proven highly effective in ship-board and static-land scenarios

Page 9

Raytheon Missile Systems

30 mm/35 mm Operational

- AHEAD technology, developed by Oerlikon Contraves, improves the capability of air defense guns to engage and destroy aerial targets from large aircraft to small targets like missiles or PGMs
- The gun fires short, 24 round burst of high velocity AHEAD rounds aimed at the target's intercept point to activate and separate the projectile into 152 heavy tungsten metal spinstabilized sub-projectiles (3.3 grams each), forming a lethal cone shaped metal cloud, placed ahead of the target in its flight path
- 35 mm AHEAD is designed to fit existing Skyguard air defense systems
- The 30 mm AirBurst Munition (ABM) is currently being qualified for the German Army for deployment with the MK 30-2 ABM cannon mounted on the Puma AIFV
- A 35 mm version optimized for ground-to-ground effect is being qualified for the Bushmaster III chain gun mounted on the new CV9035 IFV of the Royal Dutch Army. Denmark has also selected the ABM capability for its CV9035
- The ABM concept is also highly suitable as a Counter-Rockets, Mortars and Artillery (C-RAM)
 http://www.defense-update.com/products/a/ahead.htm

KE roundo oviet for peint defense

"Cargo-based" KE rounds exist for point defense

40 mm/57 mm Cannons Operational

The 57 mm MK 3 provides unmatched lethality with multiple 57 mm ammunition options available from the weapon's twin compartment magazine that can shift between round types instantly. Bofors 57 mm 3P alltarget programmable ammunition allows three proximity fuzing options as well as settings for time, impact and armor-piercing functions. With a range of 17 kilometers, Bofors 57 mm HCER surface target ammunition provides reach and explosive effect comparable to larger caliber guns

Cartridge	Weight	Velocity	Energy		
Gun	G	Meters per Second	Joules		
40mm L/60 40x311R	955	850 – 900	345,000 - 387,000		
40mm L/70 40x364R	870	1,030	461,000		
57mm m/47 57x230R	2,230	744	617,000		
57mm L60-70 57x438R	2,400	1,020	1,250,000		

http://www.uniteddefense.com/prod/ngun_mk3.htm

Littoral combat ship using the larger rounds as primary batteries

76 mm Cannons Operational and New Solutions are in Work

High speed 76 mm compatible for naval and land combat employment

Caliber Trade – Army Application

DOES NOT INCLUDE 2 + 1 Firing Protocol

Calibre	Weight	Volume	number	load per	fired per	intercepts	trucks per	gun	Firing	Time to	Time to	Max Eff	1st Engage
cm	kg	cm^3	per ton	5T truck	kill ^{&}	per truck	K intercept	firing rate	Vehicle WT	engage [@]	engage [#]	Range	Range
2.3	1	105	889	4267	20	213	5	600	20	48	16	5,000	16,800
4	2.1	574	423	2032	10	203	5	300	20	48	16	11,000	16,800
5.7	4	1,749	222	1067	3	356	3	150	20	29	10	14,000	10,080
7.6	10	3,455	89	427	2	213	5	120	40	24	8	18,000	8,400
9	15	5,814	59	284	1	284	4	20	40	72	24	18,000	25,200
10.5	17.8	8,573	50	240	1	240	5	10	40	144	48	18,000	50,400
12	27.6	11,198	32	155	1	155	7	6	60	240	80	20,000	84,000
15.5	52	26,630	17	82	1	82	13	4	60	360	120	30,000	126,000
								rpm	ton	sec	sec	meter	meter

@ Assume one AD vehicle - ignoring azimuth training time

Assume 3 AD vehicles with overlapping azimuths - ignoring azimuth training time

& Assumed to be required to effect a K kill

INCLUDES 2 + 1 Firing Protocol

Calibre	Weight	Volume	number	load per	fired per	intercepts	trucks per	gun	Firing	Time to	Time to	Max Eff	1st Engage
cm	kg	cm^3	per ton	5T truck	kill ^{&}	per truck	K intercept	firing rate	Vehicle WT	engage [@]	engage [#]	Range	Range
2.3	1	105	889	4267	20	213	5	600	20	48	16	5,000	16,800
4	2.1	574	423	2032	10	203	5	300	20	48	16	11,000	16,800
5.7	4	1,749	222	1067	4	267	4	150	20	38	13	14,000	13,440
7.6	10	3,455	89	427	3	142	8	120	40	36	12	18,000	12,600
9	15	5,814	59	284	2	142	8	20	40	144	48	18,000	50,400
10.5	17.8	8,573	50	240	2	120	9	10	40	288	96	18,000	100,800
12	27.6	11,198	32	155	2	77	13	6	60	480	160	20,000	168,000
15.5	52	26,630	17	82	2	41	25	4	60	720	240	30,000	252,000
rpm ton sec sec meter meter										meter			
	@ Assum	ne one AD ve	hicle - ign	oring azim	uth training	g time							
	# Assume 3 AD vehicles with overlapping azimuths - ignoring azimuth training time												

& Assumed to be required to effect a K kill

57 mm and 76 mm appear best for intermediate range intercept

Payload Lethality Inputs (All Data from Open Sources)

Joules required to Damage Target

Target	Light Damage	Moderate Damage	Heavy Damage		
Personnel	0.1	1	4		
Aircraft	4	10	20		
Armor	10	500	1000		

J = Kg*(m/s)² Probability of Kill

 $\mathsf{N}_{\mathsf{hits}} = \mathsf{A}(\mathsf{N}_{\mathsf{o}}/4\pi\mathsf{R}^2)$

where:

 N_{hits} is the expected number of fragments hitting; N_{o} is the initial number of fragments from the warhead;

A is the frontal area of the target presented to the warhead; R is the range of the target to the warhead.

For multiple hits the overall P_k is found from

 $P_{k} = 1 - (1 - P_{K}|_{hit})^{Nhits}$, if $N_{hits} > 1$, or

Initial Fragment Velocity

The theoretical result for fragment velocity using the Gurney constant ($2\Delta E$) for TNT is 2328 m/s:

$$v = \sqrt{2\Delta E} \sqrt{\frac{C/M}{1 + K(C/M)}}$$

where:

C/M is the charge-to-metal ratio K depends on the configuration: Flat plate: K = 1/3Cylinder: K = 1/2Sphere: K = 3/5

Fragment Velocity at Range

$$V(s) = V_o^* e^{-\rho C_d A s/2M}$$

- ρ = The density of air. Normally 1.2 Kg/m3
- V_o= The fragment velocity
- C_d = The coefficient of drag. Depends on the shape of the fragment and to some extent, the velocity
- A = The cross-sectional area of the fragment
- M = Mass of fragment
- s = Distance traveled

Projectile Must Match Warhead Size to Miss Distance Performance

All payloads require hit to kill or very high precision guidance

Gun Accuracy Implies Different Solution for Different Engagement Ranges

All solutions require hit to kill or very high precision

Conceptual Volume Allocation

Volume Allocation Based on 57 mm Projectile

Recent miniaturization allows guidance in 76 mm and 57 mm projectiles and moving towards 40 mm

Summary

- Depending on desired operational flexibility and cost sensitivity, there are a number of potential solutions
 - Targets come in radical size differences
 - Targets come in radical differences in "hardness"
- Cost/performance standard set by trailer mounted PHALANX system
- For higher mobility, the candidate calibers are between 20 mm 155 mm
- Projectiles calibers of 20 mm, 30 mm, 40 mm would likely be unguided
 - Insufficient volume for payload/guidance/power
- Guidance can be realistically considered for 57 mm and 76 mm projectiles
 - Both gun sizes can be mounted in AFV chassis
 - Guided 76 mm projectiles in advanced development
 - Projectile volumes sufficient for GNC/power considerations
- Implementation of actuation and power source are the technical challenges in smaller calibers
- For any caliber, due to wide variations in target size/hardness, it may take different warhead families to best cover threats