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• Strives for excellence: in education, outreach, and 
pioneering research.

• Award-winning, internationally-recognized faculty with 
expertise in three primary areas:
Aerospace Systems, Fluid Mechanics, and Solid Mechanics.

• 17 faculty

• 300 undergraduates and 85 graduate students 

• Institute of Technology has 4,445 undergraduates, 2,450 
graduate students, and about 400 faculty across 12 
departments.
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The Quasicontinuum Method

Exploring the Bonded Punch problem

Single Crystal Crack-Tip 
Plasticity Martensitic solid-to-solid transformations
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Advanced UAV flight 
systems

Supercavitation experimental research

High Integrity Navigation

Synthetic Visual Displays
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UAV/RPV Research at U of MN
• Project: “Remotely Piloted Aerial Vehicles for Traffic 

Management and Infrastructure Security Applications”

• Research Sponsors:
– Intelligent Transportation Systems (ITS) Institute, University of 

Minnesota.
– Minnesota Department of Transportation (MnDOT).
– SRF Consulting.

• Project Objectives:
– Explore ITS capabilities enabled by Uninhabited Aerial Vehicles (UAV) 

and Remotely Piloted Vehicles (RPV).
– Develop “turn-key” sensors and systems which enable their use ITS 

applications.
• “Dual-use Technologies”:  Relevant to homeland security applications.

– Explore regulatory issues associated with operating them for these ITS 
applications.
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ITS Applications: Classification
• Potential missions for UAV/RPV in ITS applications 

can be divided into two broad groups:
– Strategic

• Operations where the aerial vehicle is expected to traverse or 
cover a large geographical area.

• Operation mostly in response to pre-planned events.
• Vehicle must have some level of autonomy.

– Tactical
• Operations in and around a small geographical area.
• Operation can be in response to planned or unplanned events.
• Tele-operation of the vehicle is possible. 

• Our focus is on tactical operations.
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Example of Tactical Operations
• Recent examples: Hurricane Katrina 

recovery effort
– 5 Silver Fox UAVs used during 

hurricane Katrina search rescue 
operation.

– Remotely piloted helicopters used 
for structural inspection

• Planned future uses: 
– Evacuation coordination
– Nodes for communication & 

navigation networks
– Delivery of emergency supplies.
– Intelligent Transportation Systems 

(ITS) sensor platforms (e.g. Utah 
Highway Patrol Bergen Observer used 
for accident scene management)

© 2005 National Science Foundation

Silver Fox
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Applications, Regulations & Technology

• The use of RPV in support of tactical ITS or law 
enforcement operations is practical and possible in 
the current regulatory environment.

• Regulatory issues associated with operation in the 
National Airspace System make strategic UAV/RPV 
operations much more challenging.

• Many of the off-the-shelf vehicle guidance, 
navigation and control solutions MAY NOT have the 
performance required to support these applications:
– Attitude determination systems.
– Navigation.
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Guidance Navigation & Control

Sensors

Navigation
Algorithms

Guidance
Algorithms

Control
Algorithms

UAV/RPV

Ground 
Operating 
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Data Link

• Currently, our UAV/RPV work does NOT involve sensor 
payload design.
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VIDEO

http://www.aem.umn.edu/people/gebre/UAV2/Big/chapt1-divx6.avi
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+
Λ = 44.981562 (N) 
λ = -93.23928 (W)

Jensen Field, Rosemount, Minnesota

Synthetic Image (Processed GIS Data Displayed in Flightgear)
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Picture Taken From Rascal

+
Λ = 44.981562 (N) 
λ = -93.23928 (W)

Jensen Field, Rosemount, Minnesota

Video Image Captured from UM Rascal #2

Geo-Registering:  Assigning position
coordinates to pixels in the images 
captured by the onboard camera.
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One Dimensional Error Analysis
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Effect of a 0.010 Pointing/Attitude Error

Different Colors correspond to 
different standoff-distances
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Effect of a 0.10 Attitude/Pointing Error

Different Colors correspond to 
different standoff-distances
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Effect of a 10 Attitude/Pointing Error

Different Colors correspond to 
different standoff-distances
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Navigation and Attitude Sensors

• Position and Velocity Estimation
– GPS augmented by the FAA’s Wide Area Augmentation 

System (WAAS).
– Must ensure that the navigation solution has the integrity 

required for the application on hand.
• Attitude Estimation

– 1st Generation:  MIDG II GPS/INS from Microbotics Inc.
• Triad of magnetometers, triad of accelerometers, triad of rate 

gyros aided by GPS.
• Cannot achieve required accuracy in all potential maneuvers

– 2nd Generation:  Multi-antenna GPS attitude system
• Triad of Novatel Superstar II receivers
• Modified to run off a common oscillator
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GPS Based Attitude Determination

• A planar array of 3 or more GPS antennas can be arranged so 
that they define a plane.

• Orientation of the plane can be determined by knowing the 
difference in range from the antennas to GPS satellites
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GPS Attitude Determination
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GPS Attitude Determination System
• Carrier Phase Differential 

GPS Attitude 
determination system.

• Three antennas in a short 
baseline configuration

• Three Novatel SuperStar
GPS receivers:
– WAAS capable
– Differentially corrected 

position and accurate 
velocity output

• Receivers have been modified to run off the same oscillator
– Makes attitude algorithm more robust
– Makes attitude algorithm more accurate
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Avionics Bay
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Summary and Conclusions

• The use of RPV in support of tactical ITS or law 
enforcement operations is practical and possible in 
the current regulatory environment.

• Regulatory issues associated with operation in the 
National Airspace System make strategic UAV/RPV 
operations much more challenging.

• Many attitude determination solutions which appear 
or are advertised to be off-the-shelf may not be quite 
suitable for UAV/RPV applications
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