

Miniature Aerial Vehicles for Traffic Management and Transportation Infrastructure Security

Demoz Gebre-Egziabher (gebre@aem.umn.edu) Department of Aerospace Engineering & Mechanics University of Minnesota, Twin Cities Minneapolis, MN

Presentation at "Heartland Security" Conference Minneapolis, MN July 11, 2007

UNIVERSITY OF MINNESOTA

A department of the Institute of Technology at the University of Minnesota

- Strives for excellence: in education, outreach, and pioneering research.
- Award-winning, internationally-recognized faculty with expertise in three primary areas: Aerospace Systems, Fluid Mechanics, and Solid Mechanics.
- 17 faculty
- 300 undergraduates and 85 graduate students
- Institute of Technology has 4,445 undergraduates, 2,450 graduate students, and about 400 faculty across 12 departments.

A department of the Institute of Technology at the University of Minnesota

Visualizing complex structure in turbulent boundary layers

Water exposed to airflow at Mach 3.0

A department of the Institute of Technology at the University of Minnesota

Exploring the Bonded Punch problem

Single Crystal Crack-Tip

Plasticity

The Quasicontinuum Method

Martensitic solid-to-solid transformations

A department of the Institute of Technology at the University of Minnesota

High Integrity Navigation

Advanced UAV flight systems

Synthetic Visual Displays

Supercavitation experimental research

UAV/RPV Research at U of MN

- Project: "Remotely Piloted Aerial Vehicles for Traffic Management and Infrastructure Security Applications"
- Research Sponsors:
 - Intelligent Transportation Systems (ITS) Institute, University of Minnesota.
 - Minnesota Department of Transportation (MnDOT).
 - SRF Consulting.
- Project Objectives:
 - Explore ITS capabilities enabled by Uninhabited Aerial Vehicles (UAV) and Remotely Piloted Vehicles (RPV).
 - Develop "turn-key" sensors and systems which enable their use ITS applications.
 - "Dual-use Technologies": Relevant to homeland security applications.
 - Explore regulatory issues associated with operating them for these ITS applications.

ITS Applications: Classification

- Potential missions for UAV/RPV in ITS applications can be divided into two broad groups:
 - Strategic
 - Operations where the aerial vehicle is expected to traverse or cover a large geographical area.
 - Operation *mostly* in response to pre-planned events.
 - Vehicle must have some level of autonomy.
 - Tactical
 - Operations in and around a small geographical area.
 - Operation can be in response to planned or unplanned events.
 - Tele-operation of the vehicle is possible.
- Our focus is on tactical operations.

Example of Tactical Operations

- Recent examples: Hurricane Katrina recovery effort
 - 5 Silver Fox UAVs used during hurricane Katrina search rescue operation.
 - Remotely piloted helicopters used for structural inspection
- Planned future uses:
 - Evacuation coordination
 - Nodes for communication & navigation networks
 - Delivery of emergency supplies.
 - Intelligent Transportation Systems (ITS) sensor platforms (e.g. Utah Highway Patrol *Bergen Observer* used for accident scene management)

Silver Fox

Applications, Regulations & Technology

- The use of RPV in support of tactical ITS or law enforcement operations is practical and possible in the current regulatory environment.
- Regulatory issues associated with operation in the National Airspace System make strategic UAV/RPV operations much more challenging.
- Many of the off-the-shelf vehicle guidance, navigation and control solutions MAY NOT have the performance required to support these applications:
 - Attitude determination systems.
 - Navigation.

Guidance Navigation & Control

 Currently, our UAV/RPV work does NOT involve sensor payload design.

VIDEO

http://www.aem.umn.edu/people/gebre/UAV2/Big/chapt1-divx6.avi

Jensen Field, Rosemount, Minnesota

Synthetic Image (Processed GIS Data Displayed in Flightgear)

Geo-Registering: Assigning position coordinates to pixels in the images captured by the onboard camera.

Jensen Field, Rosemount, Minnesota

Video Image Captured from UM Rascal #2

One Dimensional Error Analysis

Effect of a 0.01^o Pointing/Attitude Error

Effect of a 0.1^o Attitude/Pointing Error

Effect of a 1^o Attitude/Pointing Error

Navigation and Attitude Sensors

- Position and Velocity Estimation
 - GPS augmented by the FAA's Wide Area Augmentation System (WAAS).
 - Must ensure that the navigation solution has the integrity required for the application on hand.
- Attitude Estimation
 - 1st Generation: MIDG II GPS/INS from Microbotics Inc.
 - Triad of magnetometers, triad of accelerometers, triad of rate gyros aided by GPS.
 - Cannot achieve required accuracy in all potential maneuvers
 - 2nd Generation: Multi-antenna GPS attitude system
 - Triad of Novatel Superstar II receivers
 - Modified to run off a common oscillator

GPS Based Attitude Determination

- A planar array of 3 or more GPS antennas can be arranged so that they define a plane.
- Orientation of the plane can be determined by knowing the difference in range from the antennas to GPS satellites

GPS Attitude Determination

GPS Attitude Determination System

- Carrier Phase Differential GPS Attitude determination system.
- Three antennas in a short baseline configuration
- Three Novatel SuperStar GPS receivers:
 - WAAS capable
 - Differentially corrected position and accurate velocity output

- Receivers have been modified to run off the same oscillator
 - Makes attitude algorithm more robust
 - Makes attitude algorithm more accurate

Summary and Conclusions

- The use of RPV in support of tactical ITS or law enforcement operations is practical and possible in the current regulatory environment.
- Regulatory issues associated with operation in the National Airspace System make strategic UAV/RPV operations much more challenging.
- Many attitude determination solutions which appear or are advertised to be off-the-shelf may not be quite suitable for UAV/RPV applications

Acknowledgements

- We acknowledge the support of the following organizations:
 - ITS Institute at the University of Minnesota
 - Minnesota Department of Transportation
 - SRF Consulting
 - Minnesota State Patrol
 - Honeywell International Inc.
 - Lockheed Martin Corporation
- Graduate students/research staff who contributed to this work are:
 - Curtis Olson
 - Greg Nelson
 - Troy Wigton
 - Romeo Ahohe