

New Pressed Explosives With Improved Insensitive Munitions Characteristics

2007 NDIA IM & EM Technology Symposium Miami, FL

Oct 15-18, 2007

Jason McCary, Robert Hatch and Paul Braithwaite – ATK Launch Systems Wendy Balas – US Army ARDEC

Acknowledgement

Appreciation is extended to:

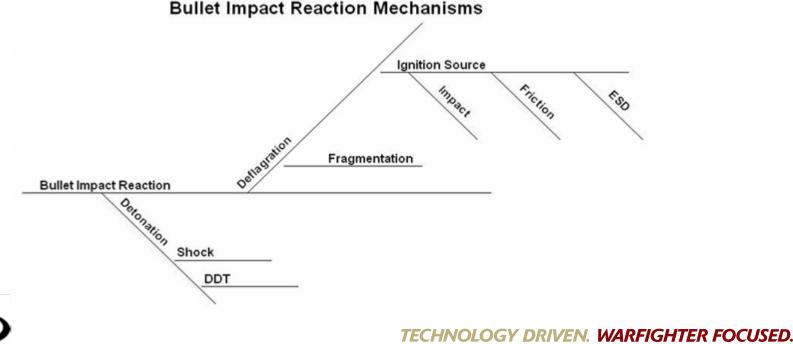
Ms. Wendy Balas of ARDEC for her continuing support of this advanced technology initiative

- Objective
- Bullet Impact Mitigation
- Cook-off Mitigation
- Summary

Objectives

Develop an explosive which meets the following criteria:

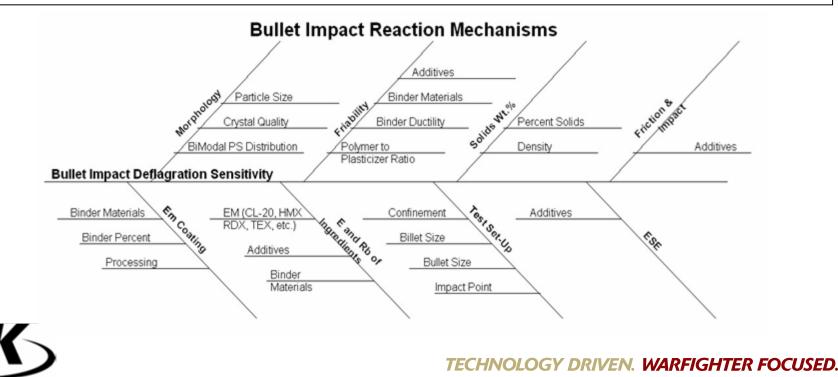
- Armor piercing with enhanced blast capability > PAX-12
- Improved IM response over LX-14
 - Measured by bullet impact sensitivity and cook-off


t		Selected Theoretical Values					
SurvivabilityLX-14	Formulation Goal		Total Enrgy (kJ/cc)	CJ Pressure (kbar)	Vel. (km/s)	V/Vo @6.5 (kJ/cc)	99% TMD (g/cc)
/ab		CL-20	12.4	463	9.82	10.8	2.02
		PAX-11	11.4	423	9.38	9.88	1.96
ິດ		PAX-12	10.9	391	9.16	9.33	1.92
	LX-14 PAX-12	LX-14	10.1	353	8.98	8.47	1.84
ATI	S Performance	•	7	ECHNOLOGY	DRIVEN. W	ARFIGHTER	FOCUSED.

RDECOM Bullet Impact Sensitivity

•Goal: Find root cause for an adverse reaction in bullet impact testing

- Determine the reaction mechanism in bullet impact response
 - Utilize pressure gauges, high speed video, witness plates



Observation

- Testing showed that *deflagration* was the most common response to bullet impact for the explosives tested
 - A fishbone diagram was built to understand variables leading to that response
 - Subsequent formulation work focused on these variables in order to minimize the response

Typical Test Set-Up

Overall View

- Data acquisition
 - Pressure
 - High speed digital video
 - Both were very useful!

Close-Up Of Billet

RDECOM Early Bullet Impact Results

- Reaction level of LX-14 is significantly lower than PAX-11c baseline formulation
- Formulation variants 1 3 focused on additives that would reduce friction
 - Initial results and additives were not promising
- Formulation 4 & 5 focused on friability and EM coating by adjusting binder materials and polymer to plasticizer ratio
 - Formulation 5 worked
 - Formulation 4 didn't!
 - Lessons were learned for future iterations

2.25 2.00 1.75 Leaction Level 1.25 1.00 1.00 1.50 PAX-11c PAX-11c PAX-11c (2) PAX-11c (1) 4 PAX-11c (3) PAX-11c (5) 0.50 LX-14 0.25 0.00 Bullet Impact Reaction Mechanisms Binder Material Solids WL Percent Solids Polymer to iModal PS Distribution Density Additives Plasticizer Ratio Bullet Impact Deflagration Sensitivity Additives Binder Material EM (CL-20, HM) Confinement DX. TEX. etc. and Rb of are diegt Billet Size Additives Bullet Size Processing Binder

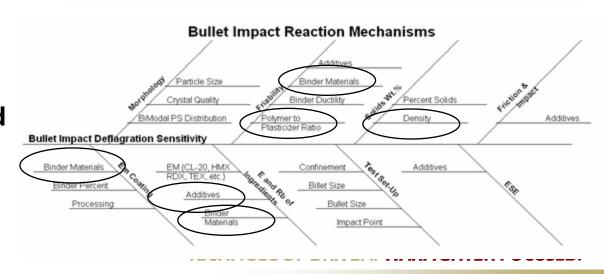
Impact Point

Materials

Initial Results for Decreasing Bullet Impact Sensitivity

Bullet Impact Tests

0.00


- Testing continued by checking multiple variables
- Most of the formulation variants (6 – 12) were less reactive
 - Friability

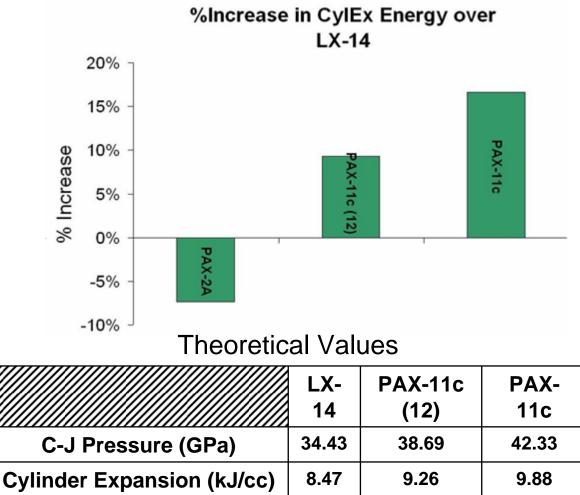
RDECO

- Polymer/plasticizer
- Binder system
- Energy
- Burn rate of ingredients
- Coating quality
- Formulation 12: Combined best ingredients from previous testing

2.25 2.00 1.75 1.50 Reaction Level 1.25 1.00 X-11c (9) 0.75 PAX-11c (6) PAX-11c (12) PAX-11c (7) PAX-11c (8) PAX-11c (11) PAX-11c (10 0.50 LX-14 0.25

Results for Decreasing Bullet Impact Sensitivity

RDECOM Bullet Impact vs Performance



Predicted Performance

- PAX-11 (12) has a predicted C-J Pressure that is 12% greater than LX-14
- Cylinder Expansion Energy is nearly 10% greater

Summary of Bullet Impact Sensitivity

• LX-14 is only marginally less sensitive than PAX-11c (12) to bullet impact

BI Pressure Impulse (psi-s)0.0540.281.27TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

0.88

2.82

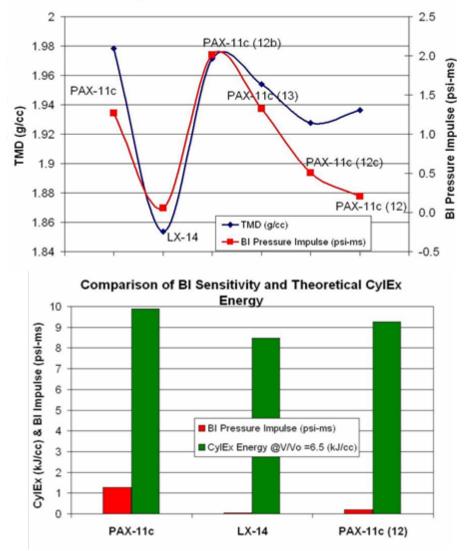
0.46

BI Peak Pressure (psi)

Correlation With BI Sensitivity

Comparison with Material TMD and **BI Sensitivity**

- Both PAX-11c and LX-14 follow very closely a TMD and BI response trend
- PAX-11c (12) allows an increase in material TMD with a minimal increase in BI sensitivity


Comparison with TMD, BI and Cylinder Expansion Energy

- PAX-11c (12) offers a positive balance between energy and sensitivity
 - High CylEx Energy
 - Low BI Sensitivity

RDECON

Comparison of TMD and BI Sensitivity

RI Test Results

- Pe
- Si(11
- Re

PAX-11c (12).AVI

Cook-Off Sensitivity

 Goal: Determine the root cause for an adverse reaction in cook-off testing

RDECON

- Approach: Develop a better understanding of the reaction mechanism in cook-off testing
 - Utilize Variable Confinement Cookoff Test (VCCT)

Explosion

Detonation

LX-14 Deflagration

Cook Off Sensitivity

Variable Confinement Cookoff Testing (VCCT) used to screen candidates

• VCCT testing was performed on PAX-11c (12) gave excellent results

- A deflagration through 0.075 inches of confinement
- Test at 0.075 inches of confinement was repeated with same excellent result

Confinement	Reaction Temp	Time to Reaction	Reaction Level
0.030 (in.)	173 °C	24.17 hrs	Press. Rupture
0.045 (in.)	173 °C	23.88 hrs	Deflagration
0.060 (in.)	173 °C	23.82 hrs	Deflagration
0.075 (in.)	176 °C	24.62 hrs	Deflagration

RDECON

Cook Off: LX-14 vs PAX-11c

	LX-14	PAX-11c (12)	PAX-11c
VCCT @ 0.030"	188°C	173°C	167°C
Confinement	Burn	Pressure Rupture	Deflagration
VCCT @ 0.075"	186°C	176°C	168°C
Confinement	Detonation	Deflagration	Detonation

Results

RDECOM

PAX-11c (12)

Nothing more severe than deflagration in VCCT

Little improvement in intrinsic thermal stability as measured in DSC

 Detonation reaction at 0.075" confinement

- 0.030"

PAX-11c (12)

LX-14 Burn

PAX-11c Deflagration

LX-14 Deflagration

LX-14

0.060"

PAX-11c (12)

Advances In Cook Off

 Lessons learned by the ARDEC/ATK team have been applied to a new metalized formulation line with very promising results

RDECON

Advances In Cook-Off

- New explosive with significantly improved reaction violence also had a surprisingly high cook-off temperature
 - Approximately 30°F higher than baseline composition
 - Often high cook off temperature equals a violent reaction!

VCCT Results (Ignition Temperature °F)					
Wall Thickness (in)					
Formulation	0.030	0.045	0.060	0.075	0.090
	Burn	Burn	Deflagration	Detonation	
LX-14	(370°F)	(369°F)	(369°F)	(367°F)	NA
Baseline	Burn	Pressure Rupture	Partial Detonation	Detonation	Detonation
Metalized	(364°F)	(366°F)	(366°F)	(365°F)	(364°F)
New	Burn	Pressure Rupture	Pressure Rupture	Deflagration	Deflagration
Metalized	(394°F)	(395°F)	(392°F)	(394°F)	(398°F)

Summary

Bullet Impact Sensitivity

- Bullet impact sensitivity measured by pressure impulse of a high energy explosive was greatly reduced by following an organized systematic approach
- An understanding of bullet impact sensitivity can lead to improvements in other formulations

Cookoff Sensitivity

- Using the same formulation that led to reduced bullet impact sensitivity a significant reduction as achieved in cookoff sensitivity
- The methodology developed in reducing cook-off violence to an initial formulation line was applied to a new formulation line with excellent results!
- Similar changes to other formulations may lead to similar improvements

