A Study on the Grinding Process of HMX using Fluid Energy Mill

Joo Seung Chae, Hyoun-Soo Kim, Jin Rae Cho

Agency for Defense Development (ADD) Yuseung P·O·Box 35-42 Daejeon, Korea

Introduction

Characteristics of HMX

1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (Octogen), C₄H₈N₈O₈ High performance explosive 6 differential class Dv = 9.1 km/s Sensitive of Impact and Friction

 \rightarrow Coated it with polymer binder and plasticizer

$$NO_{2}$$

$$H_{2}C - N - CH_{2}$$

$$I$$

$$D_{2}N - N$$

$$N - NO_{2}$$

$$I$$

$$H_{2}C - N - CH_{2}$$

$$I$$

$$NO_{2}$$

Ref) ICT database & MIL-DTL-45444C

Introduction

Aim of this study

Study on the grinding process of HMX using fluid energy mill

Find the optimum operating parameters for the purpose of average particle sizes below 5 in the process of HMX grinding

Background

Process of Grinding through jet

Type I

- relatively hard material (ex, Silica sand)
- the mechanism of separation through attrition
- the separation of particles occur primarily within the surface or in the edge
- the characteristics of the particles are maintained throughout the process of separation
- progressively as the quantitative amount of the larger particles diminish, there occurs a dramatic production of the smaller sized particles simultaneously
- during the grinding process, the formation of particle distribution retains and maintains a similar format

Ref) Y. Morin G. Jimbon J. Chem. Eng. Of Japan 122, 3163 (1958)

dR ddp %

R

0%

Background

Process of Grinding through jet

Type II

- relatively soft material (ex, Sulfur)
- the mechanism of separation through fracture
- when the particles are exposed to a greater amount of internal stress than it's capacity and are thus fractured and broken down into smaller particles subsequently
- all particles become smaller compared to its original size and the status of particle distribution is also gravitated towards the smaller side

Schematic diagram of Fluid Energy Mill (J-O-M)

Calibration curves of Volumetric feeder

The effect of the grinding material's feed rate

The effect of feed air pressure

The effect of mill air pressure at constant feed rate

The grinding result according to variations in mill pressure

The grinding results of HMXs with respect to average particle size variation

Volumetric equivalant diameter (µm)

Pre & Post Grinding process SEM images of HMX

Before Grinding

After Grinding

Conclusions

- The particle size and distribution were greatly influenced by mill air-pressure, but feed air-pressure and feed rate had little effect.
- When the air-pressure exceeds 340kPa, we can stably obtain an average fine-powder particle size below 3 regardless of feed rate.
- Under the normal circumstances and conditions within the operation of the JOM, with increase in air pressure, we were able discern the co-existence of the 2 different types of grinding mechanisms.

Conclusions

- Through the SEM image analysis, the fine-powder particles which underwent grinding were found to have a smooth surface and clean surface.
- We judge this to contribute towards the added insensitivity of the plastic bonded explosive's characteristics.