

Modeling And Simulation Of Melt Cast Explosives

Presented by Ruslan Mudryy

Sanjeev Singh Anthony Di Stasio U.S. Army Armament Research, Development And Engineering Center Picatinny Arsenal, NJ 07806-5000 TECHNOLOGY DRIVEN. W/

Presented to 2007 Insensitive Munitions & Energetic Materials Technology Symposium

October 17, 2007

 High energy, lowsensitivity explosives are desired for modern military applications

RDECO

- Large amount of munitions are prepared by melt casting processes
- High quality explosives can be achieved using well-controlled casting parameters

Motivation

- Component segregation
- Product non-uniformity
- Porosity and cavities
- Void formation
- Shrinkage
- Separation
- Cracks and microdefects

Model Overview

RDECOM Mathematical model

• Conservation of mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{u}\right) = 0$$

• Conservation of momentum

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \vec{u} \vec{u}\right) = -\nabla p + \nabla \cdot \left[\mu \left(\nabla \vec{u} + \nabla \vec{u}^{T}\right)\right] + \rho_{\infty} \vec{g} \beta_{l} \left(T - T_{\infty}\right) + \frac{\left(1 - f_{l}\right)}{\left(f_{l}^{3} + \varepsilon\right)} A_{mush} \vec{u}$$

• Conservation of energy

$$\rho \left(c_p + \frac{\partial f_l}{\partial T} \Delta H \right) \frac{\partial T}{\partial t} + \nabla \cdot \left(\rho c_p T \vec{u} \right) = \nabla \cdot \left(k \nabla T \right)$$

• Stress-strain relationship

$$\frac{\partial}{\partial t} \left(\rho \frac{\partial \vec{w}}{\partial t} \right) = \nabla \cdot \left[\mu \left(\nabla \vec{w} + \nabla \vec{w}^T \right) \right] + \nabla \left(\lambda \nabla \cdot \vec{w} + (3\lambda + 2\mu) \beta_s T \right) - \left\{ \nabla \cdot \left[\frac{\sigma_{ij}^d \sigma_{kl}^d}{\vec{\sigma}^2} \left(\frac{9G^2}{H' + 3G} \right) \nabla \vec{w} \right] \right\} + \vec{b}$$

Required Inputs for the Model

- Explosive Properties
 - Viscosity
 - Thermal conductivity
 - Thermal expansion coefficient
 - Density
 - Melting point
 - Latent heat
 - Liquid viscosity
 - Stress/strain curve

- Conditions
 - Melting temperature
 - Pour temperature
 - Projectile/metal part temperature at the time of pour
 - Operating/cooling conditions (i.e. steam panel temperature, water cart temperature, etc.)

Projectile/metal part properties: Thermal expansion coefficient, density, conductivity, specific heat

RDECOM Shrinkage of TNT in a LSGT Cylinder

- A gap of 0.1 inch is kept between top heating plate and riser
- TNT is assumed to fill 98% of the volume in the tube initially
- Significant solidification shrinkage is observed during casting
- Very small time step has to be used to the strong nonlinearity of the process

180

175 170

165 160

155 150

Improvement

RDECO

- Faster solidification rate is observed under new cooling conditions
- It is expected that the shrinkage penetration depth in the new case is less the old one, confirming the experimental results

RDECOMPONDARISON of shrinkage shapes

- CT scans are used to obtain shrinkage information
- Reconstructed shrinkage shape is superimposed on the numerical prediction
- Agreement between predicted and measured shrinkage shapes is satisfactory
- Significantly less shrinkage cavity is observed using new cooling conditions

RDECOM Casting of PAX 196 in M795

Conditions applied are:

- Pouring temperature: 190°F
- Cooling conditions:
 - 0-6 ¹/₂ hours water cooling: 145°F
- > 6 ½ hours ambient air cooling ~100°F
 - Heating conditions:
 - •0-3 ½ hours steam heating: 260°F
 - •> 6 ¹⁄₂ hours no heating, natural cooling

RDECOM Solidification Behavior

(Temperatures are in Kelvin)

- Explosive near the neck
 region solidifies after that in the projectile
- A small void will be formed near the center of the projectile
- It takes ~10.5 hours for the solidification process to complete
- Large temperature gradient exists in region below the steam heater; this is the part where separation is expected to occur

Bottom up cooling

 Cooling water was gradually filled into the water cart to make the solid front move in a relatively flat shape and from bottom to top, referred to as "upward solidification"

RDECO

 <u>Steam heater</u> is held at
 220F for the first 6.5 hours, and then gradually decrease to
 160F at a rate of -1 F/min

RDECOM Displacement comparison

RDECOMPERICAL and Experimental results

Conclusions

- A rigorously validated numerical model is developed for melt casting
- Numerical modeling offers extensive capabilities to analyze complex physical phenomena in melt casting.
- Engineering challenges such as solidification shrinkage, voids formation and base/neck separation can be addressed using our advanced model.
- Numerical simulation can significantly cut <u>production</u> <u>cost</u> and <u>time for R&D</u>.
- Process optimization, which can enable <u>large-scale</u> <u>munitions production</u>, can be achieved by using numerical parametric studies.

Backup

Casting of TNT in LSGT

RDECOM

RDECOM Temperature and Free Surface Evolution

Model Validation

 Good agreement is observed between experimental and numerical data

RDECOM

Satisfactory agreement is observed by comparing experimental measurements and numerical predictions

RDECOM Dynamic Water Level Changes

