



### Development of Promising New Cast Cure Explosives

2007 NDIA IM & EM Technology Symposium Miami, FL

Oct 15-18, 2007

Robert Hatch and Paul Braithwaite – ATK Launch Systems Wendy Balas – US Army ARDEC





Acknowledgement



Appreciation is extended to:

# Ms. Wendy Balas of ARDEC for her continuing support of this advanced technology initiative





### Outline



- Objective and approach
- Performance
- Formulation processing
- Shock Sensitivity
- Bullet Impact
- Cook-off
- Summary



### **Objectives and Approach**



# **Objectives:** Develop new cast cure explosives which meet the following criteria:

- Improved performance over PBXN-110
- Equivalent IM response to PBXN-110
  - Measured by shock sensitivity, bullet impact sensitivity, and cook-off

# Approach: Increase solids loading to 89% in an HTPB binder system

- Non-aluminized formulation DLE-C051 for metal-driving applications
- Aluminized formulation DLE-C050 for dual purpose applications metal driving and blast



RDECOM

### **Theoretical Performance**



#### **Cheetah performance prediction comparison to PBXN-110:**

- DLE-C051 has 4.5% increase in Energy  $@V/V_0=6.5$
- DLE-C050 has 31% increase in total mechanical energy (blast)
- Cylinder expansion testing is planned to quantify delivered energy

| Formulation                      | <b>DLE-C050</b> | DLE-C051 | <b>PBXN-110</b> |
|----------------------------------|-----------------|----------|-----------------|
| HMX                              | 74              | 89       | 88              |
| Aluminum                         | 15              | 0        | 0               |
| HTPB/Plasticizer                 | 11              | 11       | 12              |
| Total Solids (%)                 | 89              | 89       | 88              |
| Density (g/cc)                   | 1.776           | 1.705    | 1.678           |
| P <sub>ci</sub> (Kbar)           | 247             | 264      | 249             |
| $V_d$ (km/s) <sup>*</sup>        | 7.59            | 7.89     | 7.75            |
| CJ Temperature (°K)              | 4734            | 3757     | 3682            |
| Energy @ V/V $_{o}$ =6.5 (kJ/cc) | 8.15            | 7.22     | 6.91            |
| Total Mechanical Energy (kJ/cc)  | 11.46           | 9.10     | 8.77            |



RDFCOM



### Processing



Processing at 89% solids with a bimodal blend of HMX (coarse and fine) was a significant challenge

 A new plasticizer reduced mix viscosity compared to IDP used in PBXN-110

| Formulations at 88% Solids |                 |                 |  |  |
|----------------------------|-----------------|-----------------|--|--|
| Formulation                | <b>PBXN-110</b> | HMXcast 02      |  |  |
| HMX                        | 88%             | 88%             |  |  |
| Plasticizer                | IDP             | New Plasticizer |  |  |
| EOM Viscosity (kp)         | 35              | 9.5             |  |  |

- A special grind of fine HMX reduced viscosity about 6 kP
- Excellent casting and flow of mixes







### **Shock Sensitivity**



## Large Scale Gap Test (LSGT) conducted

• Sensitivity similar to PBXN-110







#### LSGT of DLE-C051





### **Bullet Impact Testing**





- Data acquisition
  - Pressure
  - High speed digital video
  - Both were very useful!

#### 50 caliber impact of bare ½ lb billet is used for initial screening



#### **Close-Up Of Billet**





### **Bullet Impact Results**



No reaction evident in bullet impact of DLE-C050

Blast overpressure same as inert sample

Bullet impact of bare billet of DLE-C051 is planned along with bullet impact of 3.2 in. generic shaped charges of both formulations





# Variable Confinement Cookoff Testing (VCCT) used to evaluate formulations

• VCCT testing of DLE-C050 showed excellent results

| VCCT of DLE-C050        |                              |                  |  |  |  |
|-------------------------|------------------------------|------------------|--|--|--|
| Wall Thickness<br>(in.) | Reaction Temperature<br>(°C) | Reaction Level   |  |  |  |
| 0.030                   | 182                          | burn             |  |  |  |
| 0.045                   | 167                          | pressure rupture |  |  |  |
| 0.060                   | 182                          | pressure rupture |  |  |  |
| 0.075                   | 186                          | pressure rupture |  |  |  |
| 0.090                   | 172                          | deflagration     |  |  |  |

- VCCT planned with DLE-C051
- Slow cookoff testing planned with 3.2 in. generic shaped charges



RNFCA



### VCCT of DLE-C050





0.030"

0.045"







0.090"





### Summary



New cast cure HMX-based explosives developed

• Aluminized (DLE-C050) and non-aluminized (DLE-C051) formulations

89% solids improves on the performance of PBXN-110

Mixes have excellent processing characteristics

Shock sensitivity similar to PBXN-110

Bullet impact and VCCT response of DLE-C050 are excellent

• Similar tests are planned with DLE-C051

Further IM testing is planned using 3.2 in. generic shaped charges

