Next Generation IM Mortar Fill – Optimized PAX-33 Development and Characterization

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2007

Curtis Teague*, Andrew Wilson, Brian Alexander, Virgil Fung BAE SYSTEMS OSI, Holston Army Ammunition Plant

Briefing Objectives

- Program Goals
- Background
- Recent Developments
- Material Characterization
- Future Plans
- Summary

Program Goals

- Program began as part of the PAX-21 PIP effort with the initial goals:
 - Replace AP
 - PAX-21 or better performance
 - PAX-21 or better IM
- Initial formulation (OSX-1) achieved those goals
- Goals for further optimization:
 - Improved performance vs. PAX-21
 - Improved IM vs. PAX-21 and OSX-1
 - Applicability across 3 different mortars (60, 81, 120mm)

- OSX-1 formulation developed as part of the PAX-21 PIP effort
 - DNAN
 - NTO
 - RDX
- Objective was to use ingredients manufactured on Production scale at Holston

- DNAN and NTO inherently less sensitive than traditional high explosives and melt base ingredients
 - Manufactured in Agile Facility at Holston

Batch #	DNAN	FEM RDX	нмх	ТАТВ	ΝΤΟ	Viscosity (sec)	Processability
PAX-21 (ref.)	х	х'	х''	х'''	х''''	≤15	good
1020-148	+2	-9	+5	-	+2	19	good
1033-78	-1	0.5	0	-	+0.5	> I min	fair
1033-68 B	-2	9	0	-	-7	> 60	poor
1020-142	-3	-6.5	+5	-	+4.5	> 1 min	poor
1033-82	-3	-4.6	0	-	+7.64	~20 sec	good
1033-50	-4	-6	+5	-	+5	15.2	good
1033-68 A	-4	-1	0	-	+5	> 60	good
1033-68 C	-4	-8	0	-	+12	15.2	good
OSX-1-01	-1	-6	0	-	+7	10.1	good
1033-43 B	+2	-	+5	+15	+14	4	good
1033-32	+2	-	+10	+15	+9	15-19	good
1029-124	0	-	+5	+20	+11	n/a	poor
1033-47	-1	-	+5	+16	+16	11.4	good
OSX-3	-1	-	+5	+16	+16	~20 sec	good
1029-142	+6	-	-	+14	+16	10.4	good

OSI FORMULATIONS RELATIVE TO PAX-21 (% ^w/_w)

OSX-1 Formulation Testing

	Navy	DSC Melting	DSC Decomposition	Velocity of	LSGT Card
Formulation	Impact (cm)	Point (°C)	Temperature (°C)	Detonation (% PAX-21)	Gap (# cards)
PAX-21	27-30 (typical)	89 (typical)	193 (typical)	100	155 ± 5
OSX-1	78	88	207	113	144

120mm Smooth Bore Mortar - Adhesion

- OSX-1 assigned the designation PAX-33 by ARDEC
- Additional development program funded to optimize PAX-33 formulation for mortar application
 - Optimization of formulation for performance and processability
 - Determine effects of Methyl Nitroaniline (MNA) on formulation
 - Analytical methods development for product and ingredients
- Modified ratios and concentration of ingredients in PAX-33
 - Target was reduced sensitivity and improved performance

- Several iterations of formulations were examined
- OSX-7 formulation identified as the candidate to optimize
- Ingredient ratios modified
 - DNAN
 - NTO
 - RDX

MaterialTNDVOD (%LSG I (G/cc)ReferenceManufacture to DateExothermVis (se (se c	ec.) @ 96°C
TNT 1.654 84 100 133 MSIAC -	-
Comp B 1.76329 100 120 207 LLNL / NOL 80 / 215	-
PAX-21 1.72857 83 99 161 ARDEC Production 89 / 193 4.8	8 - 8.6
PAX-33 1.73614 89 106 144 UTEC / ARDEC (1200 1500 88 / 207	8.7
PAX-34 1.76098 83 99 104 ARDEC (1200-1300 92/231	8.5
OSX-7 (PAX-33, II) 1.728 98 113 118 OSI B Scale) 89 / 213	6.6
OSX-8 1.76 96 113 110 OSI 93/231	5.3
OSX-9 1.75 97 108 106 OSI 88/199 1	10.5

- OSX-7
 - Large scale manufacture in Holston production equipment (1200 lb. batch)
 - Material supplied to PM CAS for loading into mortars

- MNA introduced as an ingredient in PAX-21 to lower the melting point of the formulation
- Effect of MNA concentration on melting point and exotherm onset of DNAN was explored
 - Samples containing 0.0%, 0.1%, 0.3%, 0.5%, 1.0% and 5.0% MNA by weight were analyzed by DSC
 - MNA added as dry powder in one set of samples and melted together with DNAN in the other set of samples
- Effect of MNA concentration on melting point and exotherm onset of PAX-33 was explored
 - Samples containing 0.0% and 0.25% (typical concentration in PAX-21) MNA by weight were analyzed by DSC
 - MNA added by melting together with the PAX-33

- The addition of MNA to DNAN did not have a significant effect on the melting point or exotherm at concentrations less than 5.0%
- At a concentration of 5.0%, the MNA lowered both the melting point and the exotherm of DNAN significantly

Sample ID	%MNA	Melting Point (°C) (Avg. of 3)	Exotherm (°C) (Avg. of 3)	Standard Deviation
PAX 33 OPT 0.0%	0.0	98.21	358.59	1.046
PAX 33 OPT 0.1%	0.1	96.45	357.7	1.195
PAX 33 OPT 0.3%	0.3	96.61	356.86	1.828
PAX 33 OPT 0.5%	0.5	97.12	354.37	2.084
PAX 33 OPT 1.0%	1.0	97.05	351.81	0.837
PAX 33 OPT 5.0%	5.0	92.99	337.76	1.831

Thermal effect analysis– MNA mixed with MOLTEN DNAN

DNAN Melted with 0.0% MNA

- Results of MNA study
 - The addition of MNA at a level of 0.25% to PAX-33 lowered the melting point by 1.6% over PAX-33 with no MNA
 - The melting point of PAX-33 with no MNA was 4 - 5°C lower than DNAN
 - The addition of an organic compound, whether MNA or NTO or RDX, lowers the melting point

Thermal effect analysis– MNA mixed in PAX-33 formulation

Sample ID	%MNA	Melting Point (°C) (Avg. of 3)	Exotherm (°C) (Avg. of 3)	Standard Deviation
PAX 33 1043-137A	0	90.42	213.31	1.733
PAX 33 1043-137B	0.25	88.83	207.8	0.884

Future Plans

- OSX-7 (PAX-33 Type II) candidate for PM CAS IM Mortar Program
- Material to be tested in 120mm Mortar
- Additional testing on 60mm and 81mm mortar planned
- OSX-7 provided basis for further formulation development using DNAN and NTO (OSX-8 and OSX-9)

Summary

- Optimized formulation developed as PAX-33 Type II (OSX-7)
 - Low-cost replacement melt-pour fill for mortars with Comp B performance
 - Reduced shock sensitivity vs. Comp B and PAX-21
 - Price around \$14 \$16 / lb. for large quantities
 - Ingredients readily available and manufactured at Holston
 - Viable candidate for common fill across all mortar sizes

Acknowledgement

- PM CAS
 - Mr. Bill Kuhnle
- RDECOM-ARDEC
 - Mr. Paul Vinh
 - Mr. Roger Wong
 - Mr. Brian Travers
- BAE SYSTEMS OSI
 - Mr. Brian Alexander
 - Mr. Virgil Fung
 - Ms. Brooke Boggs
 - Ms. Kelly Guntrum
 - Mr. Andrew Wilson